Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin Voordeckers is active.

Publication


Featured researches published by Karin Voordeckers.


Fems Microbiology Reviews | 2014

Improving industrial yeast strains: exploiting natural and artificial diversity

Jan Steensels; Tim Snoek; Esther Meersman; Martina Picca Nicolino; Karin Voordeckers; Kevin J. Verstrepen

Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity.


PLOS Biology | 2012

Reconstruction of Ancestral Metabolic Enzymes Reveals Molecular Mechanisms Underlying Evolutionary Innovation through Gene Duplication

Karin Voordeckers; Chris A. Brown; Kevin Vanneste; Elisa van der Zande; Arnout Voet; Steven Maere; Kevin J. Verstrepen

Resurrection of ancient fungal maltase enzymes uncovers the molecular details of how repeated gene duplications allow the evolution of protein variants with different functions.


Cell | 2016

Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts

Brigida Gallone; Jan Steensels; Troels Prahl; Leah Soriaga; Veerle Saels; Beatriz Herrera-Malaver; Adriaan Merlevede; Miguel Roncoroni; Karin Voordeckers; Loren Miraglia; Clotilde Teiling; Brian Steffy; Maryann Taylor; Ariel Schwartz; Toby Richardson; Christopher White; Guy Baele; Steven Maere; Kevin J. Verstrepen

Summary Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today’s industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PaperClip


Molecular Biology and Evolution | 2009

Functioning and Evolutionary Significance of Nutrient Transceptors

Johan M. Thevelein; Karin Voordeckers

The discovery of nutrient transceptors, transporter-like proteins with a receptor function, suggests that receptors for chemical signals may have been derived in evolution from nutrient transporters. Several examples are now available of nutrient transporters with an additional nutrient signaling function, nutrient receptors with a transporter-like sequence and structure but without transport capacity, and G protein-coupled receptors (GPCRs) that have nutrients as ligands. Recent results have revealed that transceptor signaling requires a specific ligand-induced conformational change, which indicates that transceptors function in a similar way as regular receptors. Advanced bioinformatic analysis for detection of homology in distantly related proteins identifies the nontransporting glucose transceptor Rgt2 as the closest homologue of the glucose-sensing GPCR Gpr1 in yeast. This supports an intermediate position for nutrient transceptors in evolution, between nutrient transporters and classical receptors for chemical signals.


Fems Yeast Research | 2010

Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling

Marta Rubio-Texeira; Griet Van Zeebroeck; Karin Voordeckers; Johan M. Thevelein

The ability to elicit a fast intracellular signal leading to an adaptive response is crucial for the survival of microorganisms in response to changing environmental conditions. Therefore, in order to sense changes in nutrient availability, the yeast Saccharomyces cerevisiae has evolved three different classes of nutrient-sensing proteins acting at the plasma membrane: G protein-coupled receptors or classical receptor proteins, which detect the presence of certain nutrients and activate signal transduction in association with a G protein; nontransporting transceptors, i.e. nutrient carrier homologues with only a receptor function, previously called nutrient sensors; and transporting transceptors, i.e. active nutrient carriers that combine the functions of a nutrient transporter and receptor. Here, we provide an updated overview of the proteins involved in sensing nutrients for rapid activation of the protein kinase A pathway, which belong to the first and the third category, and we also provide a comparison with the best-known examples of the second category, the nontransporting transceptors, which control the expression of the regular transporters for the nutrient sensed by these proteins.


PLOS Genetics | 2015

Adaptation to High Ethanol Reveals Complex Evolutionary Pathways

Karin Voordeckers; Jacek Kominek; Anupam Das; Adriana Espinosa-Cantú; Dries De Maeyer; Ahmed Arslan; Michiel Van Pee; Elisa van der Zande; Wim Meert; Yudi Yang; Bo Zhu; Kathleen Marchal; Alexander DeLuna; Vera van Noort; Rob Jelier; Kevin J. Verstrepen

Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts.


Molecular Microbiology | 2012

Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology

Karin Voordeckers; Dries De Maeyer; Elisa van der Zande; Marcelo D. Vinces; Wim Meert; Lore Cloots; Owen Ryan; Kathleen Marchal; Kevin J. Verstrepen

When grown on solid substrates, different microorganisms often form colonies with very specific morphologies. Whereas the pioneers of microbiology often used colony morphology to discriminate between species and strains, the phenomenon has not received much attention recently. In this study, we use a genome‐wide assay in the model yeast Saccharomyces cerevisiae to identify all genes that affect colony morphology. We show that several major signalling cascades, including the MAPK, TORC, SNF1 and RIM101 pathways play a role, indicating that morphological changes are a reaction to changing environments. Other genes that affect colony morphology are involved in protein sorting and epigenetic regulation. Interestingly, the screen reveals only few genes that are likely to play a direct role in establishing colony morphology, with one notable example being FLO11, a gene encoding a cell‐surface adhesin that has already been implicated in colony morphology, biofilm formation, and invasive and pseudohyphal growth. Using a series of modified promoters for fine‐tuning FLO11 expression, we confirm the central role of Flo11 and show that differences in FLO11 expression result in distinct colony morphologies. Together, our results provide a first comprehensive look at the complex genetic network that underlies the diversity in the morphologies of yeast colonies.


Journal of Biological Chemistry | 2011

Yeast 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) Orthologs Pkh1–3 Differentially Regulate Phosphorylation of Protein Kinase A (PKA) and the Protein Kinase B (PKB)/S6K Ortholog Sch9

Karin Voordeckers; Marlies Kimpe; Steven Haesendonckx; Wendy Louwet; Matthias Versele; Johan M. Thevelein

Pkh1, -2, and -3 are the yeast orthologs of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1). Although essential for viability, their functioning remains poorly understood. Sch9, the yeast protein kinase B and/or S6K ortholog, has been identified as one of their targets. We now have shown that in vitro interaction of Pkh1 and Sch9 depends on the hydrophobic PDK1-interacting fragment pocket in Pkh1 and requires the complementary hydrophobic motif in Sch9. We demonstrated that Pkh1 phosphorylates Sch9 both in vitro and in vivo on its PDK1 site and that this phosphorylation is essential for a wild type cell size. In vivo phosphorylation on this site disappeared during nitrogen deprivation and rapidly increased again upon nitrogen resupplementation. In addition, we have shown here for the first time that the PDK1 site in protein kinase A is phosphorylated by Pkh1 in vitro, that this phosphorylation is Pkh-dependent in vivo and occurs during or shortly after synthesis of the protein kinase A catalytic subunits. Mutagenesis of the PDK1 site in Tpk1 abolished binding of the regulatory subunit and cAMP dependence. As opposed to PDK1 site phosphorylation of Sch9, phosphorylation of the PDK1 site in Tpk1 was not regulated by nitrogen availability. These results bring new insight into the control and prevalence of PDK1 site phosphorylation in yeast by Pkh protein kinases.


Current Opinion in Biotechnology | 2015

How do regulatory networks evolve and expand throughout evolution

Karin Voordeckers; Ksenia Pougach; Kevin J. Verstrepen

Throughout evolution, regulatory networks need to expand and adapt to accommodate novel genes and gene functions. However, the molecular details explaining how gene networks evolve remain largely unknown. Recent studies demonstrate that changes in transcription factors contribute to the evolution of regulatory networks. In particular, duplication of transcription factors followed by specific mutations in their DNA-binding or interaction domains propels the divergence and emergence of new networks. The innate promiscuity and modularity of regulatory networks contributes to their evolvability: duplicated promiscuous regulators and their target promoters can acquire mutations that lead to gradual increases in specificity, allowing neofunctionalization or subfunctionalization.


Nature Communications | 2014

Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network

Ksenia Pougach; Arnout Voet; Fyodor Kondrashov; Karin Voordeckers; Joaquin F. Christiaens; Bianka Baying; Vladimir Benes; Ryo Sakai; Jan Aerts; Bo Zhu; Patrick Van Dijck; Kevin J. Verstrepen

The emergence of new genes throughout evolution requires rewiring and extension of regulatory networks. However, the molecular details of how the transcriptional regulation of new gene copies evolves remain largely unexplored. Here we show how duplication of a transcription factor gene allowed the emergence of two independent regulatory circuits. Interestingly, the ancestral transcription factor was promiscuous and could bind different motifs in its target promoters. After duplication, one paralogue evolved increased binding specificity so that it only binds one type of motif, whereas the other copy evolved a decreased activity so that it only activates promoters that contain multiple binding sites. Interestingly, only a few mutations in both the DNA-binding domains and in the promoter binding sites were required to gradually disentangle the two networks. These results reveal how duplication of a promiscuous transcription factor followed by concerted cis and trans mutations allows expansion of a regulatory network.

Collaboration


Dive into the Karin Voordeckers's collaboration.

Top Co-Authors

Avatar

Kevin J. Verstrepen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Johan M. Thevelein

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bo Zhu

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Elisa van der Zande

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Matthias Versele

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wim Meert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Arnout Voet

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Elham Aslankoohi

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jan Steensels

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Joaquin F. Christiaens

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge