Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin Wuertz is active.

Publication


Featured researches published by Karin Wuertz.


Journal of Orthopaedic Research | 2009

In Vivo Remodeling of Intervertebral Discs in Response to Short- and Long-Term Dynamic Compression

Karin Wuertz; Karolyn Godburn; Jeffrey J. MacLean; Ana Barbir; Justin Stinnett Donnelly; Peter J. Roughley; Mauro Alini; James C. Iatridis

This study evaluated how dynamic compression induced changes in gene expression, tissue composition, and structural properties of the intervertebral disc using a rat tail model. We hypothesized that daily exposure to dynamic compression for short durations would result in anabolic remodeling with increased matrix protein expression and proteoglycan content, and that increased daily load exposure time and experiment duration would retain these changes but also accumulate changes representative of mild degeneration. Sprague‐Dawley rats (n = 100) were instrumented with an Ilizarov‐type device and divided into three dynamic compression (2 week–1.5 h/day, 2 week–8 h/day, 8 week–8 h/day at 1 MPa and 1 Hz) and two sham (2 week, 8 week) groups. Dynamic compression resulted in anabolic remodeling with increased matrix mRNA expression, minimal changes in catabolic genes or disc structure and stiffness, and increased glysosaminoglycans (GAG) content in the nucleus pulposus. Some accumulation of mild degeneration with 8 week–8 h included loss of annulus fibrosus GAG and disc height although 8‐week shams also had loss of disc height, water content, and minor structural alterations. We conclude that dynamic compression is consistent with a notion of “healthy” loading that is able to maintain or promote matrix biosynthesis without substantially disrupting disc structural integrity. A slow accumulation of changes similar to human disc degeneration occurred when dynamic compression was applied for excessive durations, but this degenerative shift was mild when compared to static compression, bending, or other interventions that create greater structural disruption.


European Spine Journal | 2009

Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration

Beatrice E. Bachmeier; Andreas G. Nerlich; Norbert Mittermaier; Christoph Weiler; Christianto Lumenta; Karin Wuertz; Norbert Boos

The disruption of the extracellular disc matrix is a major hallmark of disc degeneration. This has previously been shown to be associated with an up-regulation of major matrix metalloproteinase (MMP) expression and activity. However, until now hardly any data are available for MMP/TIMP regulation and thereby no concept exists as to which MMP/TIMP plays a major role in disc degeneration. The objective of this study was, therefore, to identify and quantify the putative up-regulation of MMPs/TIMPs on the mRNA and protein level and their activity in disc material in relation to clinical data and histological evidence for disc degeneration. A quantitative molecular analysis of the mRNA expression levels for the MMPs (MMPs-1, -2, -3, -7, -8, -9, -13) and the MMP inhibitors (TIMPs-1 and -2) was performed on 37 disc specimens obtained from symptomatic disc herniation or degeneration. In addition, disc specimens from patients without disc degeneration/herniation (=controls) were analyzed. Expression of MMPs-1, -2, -3, -7, -8, -9, -13 and TIMPs-1, -2 was analyzed using quantitative RT-PCR, normalized to the expression level of a house keeping gene (GAPDH). Gene expression patterns were correlated with MMP activity (in situ zymography), protein expression patterns (immunohistochemistry), degeneration score (routine histology) and clinical data. MMP-3 mRNA levels were consistently and substantially up-regulated in samples with histological evidence for disc degeneration. A similar but less pronounced up-regulation was observed for MMP-8. This up-regulation was paralleled by the expression of TIMP-1 and to a lesser extent TIMP-2. In general, these findings could be confirmed with regard to protein expression and enzyme activity. This study provides data on the gene and protein level, which highlights the key role of MMP-3 in the degenerative cascade leading to symptomatic disc degeneration and herniation. Control of the proteolytic activity of MMP-3 may, therefore, come into the focus when aiming to develop new treatment options for early disc degeneration.


Spine | 2011

Age-Related Variation in Cell Density of Human Lumbar Intervertebral Disc

Thomas Liebscher; Mathias Haefeli; Karin Wuertz; Andreas G. Nerlich; Norbert Boos

Study Design. Changes in cell density of endplate (EP), nucleus pulposus (NP), and anulus fibrosus (AF) during ageing were systematically investigated in defined regions of interest in complete human motion segments. Objectives. To elucidate cell density and total cell number in distinct anatomic regions of the intervertebral disc; to test effects of gender, level and age on cell density; and to correlate changes in cell density with histologic signs of disc degeneration. Summary of Background Data. The available information on the cell density within intervertebral discs and its age-related changes is sparse. This knowledge, however, is a crucial prerequisite for cell-based tissue engineering approaches of the intervertebral disc. Methods. In 49 complete cross-sections from lumbar motion segments (newborn to 86 years) from 22 specimens, cell density was determined by the Abercrombie method in EP, NP, and AF, and total cell number was counted per region of interest. Results. Cell density in EP, NP, and AF decreased significantly from 0 to 16 years with the main changes occuring from 0 to 3 years for NP and AF. No significant variations were observed thereafter. We found a significant correlation of cell density and histologic degeneration score between 0 and 1, but not for scores >1. Gender and disc level did not influence cell density. Conclusion. This study provides data concerning the total number of cells in the various regions of the intervertebral disc for different age groups. This knowledge will be beneficial for cell-based treatment approaches, which may evolve in the future.


Spine | 2008

Behavior of Mesenchymal Stem Cells in the Chemical Microenvironment of the Intervertebral Disc

Karin Wuertz; Karolyn Godburn; Cornelia Neidlinger-Wilke; Jocelyn Urban; James C. Iatridis

Study Design. Responses of mesenchymal stem cells (MSCs) from 2 age groups was analyzed under chemical conditions representative of the intervertebral disc (IVD) (low glucose levels, acidic pH, high osmolarity, and combined conditions). Objective. To determine the microenvironmental conditions of the IVD that are critical for MSC-based tissue repair and to determine whether MSCs from different age groups respond differently. Summary of Background Data. MSCs offer promise for IVD repair, but their potential is limited by the harsh chemical microenvironment in which they must survive. Methods. MSCs were isolated from bone marrow from mature (4–5 month old) and young (1 month old) rats and cultured in monolayer under IVD-like glucose, osmolarity, and pH conditions as well as under a combination of these conditions and under standard media conditions for 2 weeks. The response of MSCs was examined by measuring gene expression (real-time RT-PCR), proliferation (MTT assay), and viability (fluorescence staining). Results. Culturing under IVD-like glucose conditions (1.0 mg/mL glucose) stimulated aggrecan and collagen-1 expression and caused a small increase in proliferation. In contrast, IVD-like osmolarity (485 mOsm) and pH (pH = 6.8) conditions strongly decreased proliferation and expression of matrix proteins, with more pronounced effects for osmolarity. Combining these 3 conditions also resulted in decreased proliferation, and gene expression of matrix proteins, demonstrating that osmolarity and pH dominated the effects of glucose. Both age groups showed a similar response pattern to the disc microenvironment. Conclusion. IVD repair using MSCs requires increased knowledge of MSC response to the chemical microenvironment. IVD-like low glucose enhanced matrix biosynthesis and maintained cell proliferation whereas IVD-like high osmolarity and low pH conditions were critical factors that reduced biosynthesis and proliferation of young and mature MSCs. Since osmolarity decreases and acidity increases during degeneration, we speculate that pH may be the major limitation for MSC-based IVD repair.


Global Spine Journal | 2013

Inflammatory Mediators in Intervertebral Disk Degeneration and Discogenic Pain

Karin Wuertz; Lisbet Haglund

Although degeneration of the intervertebral disk has historically been described as a misbalance between anabolic and catabolic factors, the role of inflammatory mediators has long been neglected. However, past research clearly indicates that inflammatory mediators such as interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α are expressed at higher levels in “diseased” intervertebral disks. Both disk cells as well as invading macrophages can be the source of the detected cytokines. Importantly, occurrence of inflammatory mediators in the disk can worsen the progress of degeneration by inducing the expression of matrix degrading enzymes as well as by inhibiting extracellular matrix synthesis. In addition, inflammatory mediators play a crucial role in pain development during intervertebral disk herniation (i.e., sciatica) and disk degeneration (i.e., discogenic pain). This review provides information on the most relevant inflammatory mediators during different types of disk diseases and explains how these factors can induce disk degeneration and the development of discogenic and sciatic/radiculopathic pain.


Spine | 2011

The red wine polyphenol resveratrol shows promising potential for the treatment of nucleus pulposus-mediated pain in vitro and in vivo.

Karin Wuertz; Lilian Quero; Miho Sekiguchi; Marina Klawitter; Andreas G. Nerlich; Shin-ichi Konno; Shinichi Kikuchi; Norbert Boos

Study Design. Descriptive and mechanistic investigation of the anti-inflammatory and anticatabolic effect of resveratrol in intervertebral discs (IVDs) in vitro and of the analgetic effect in vivo. Objective. To determine whether resveratrol may be useful in treating nucleus pulposus (NP)–mediated pain. Summary of Background data. Proinflammatory cytokines seem to be key mediators in the development of NP-mediated pain. Patients with discogenic or radiculopathic pain may substantially benefit from anti-inflammatory substances that could be used in a minimal-invasive treatment approach. Resveratrol, a polyphenolic phytoalexin found in red wine exhibits anti-inflammatory effects in various cell types and tissues, but no data exists so far with regards to the IVD in the context of low back and leg pain. Methods. In part 1, the anti-inflammatory and anticatabolic effect of resveratrol was investigated in a cell culture model on interleukin 1&bgr; (IL-1&bgr;) prestimulated human IVD cells on the gene and protein expression level. In part 2, the molecular mechanisms underlying the effects observed upon resveratrol treatment were investigated (toll-like receptors, nuclear factor &kgr;B, sirtuin 1 (SIRT1), mitogen-activated protein (MAP) kinases p38/ERK/JNK). In part 3, the analgetic effects of resveratrol were investigated in vivo using a rodent model of radiculopathy and von Frey filament testing. All quantitative data were statistically evaluated either by Mann-Whitney U test or by one-way analysis of variance and Bonferroni post hoc testing (P < 0.05). Results. In vitro, resveratrol exhibited an anti-inflammatory and anticatabolic effect on the messenger RNA and protein level for IL-6, IL-8, MMP1, MMP3 and MMP13. This effect does not seem to be mediated via the MAP kinase pathways (p38, ERK, JNK) or via the NF-&kgr;B/SIRT1 pathway, although toll-like receptor 2 was regulated to a minor extent. In vivo, resveratrol significantly reduced pain behavior triggered by application of NP tissue on the dorsal root ganglion for up to 14 days. Conclusion. Resveratrol was able to reduce levels of proinflammatory cytokines in vitro and showed analgetic potential in vivo. A decrease in proinflammatory cytokines may possibly be the underlying mechanism of pain reduction observed in vivo. Resveratrol seems to have considerable potential for the treatment of NP-mediated pain and may thus be an alternative to other currently discussed (biological) treatment options.


Biochemical and Biophysical Research Communications | 2009

MSC response to pH levels found in degenerating intervertebral discs

Karin Wuertz; Karolyn Godburn; James C. Iatridis

Painful degenerative disc disease is a major health problem and for successful tissue regeneration, MSCs must endure and thrive in a harsh disc microenvironment that includes matrix acidity as a critical factor. MSCs were isolated from bone marrow of Sprague-Dawley rats from two different age groups (<1 month, n=6 and 4-5 months, n=6) and cultured under four different pH conditions representative of the healthy, mildly or severely degenerated intervertebral disc (pH 7.4, 7.1, 6.8, and 6.5) for 5 days. Acidity caused an inhibition of aggrecan, collagen-1, and TIMP-3 expression, as well as a decrease in proliferation and viability and was associated with a change in cell morphology. Ageing had generally minor effects but young MSCs maintained greater mRNA expression levels. As acidic pH levels are typical of increasingly degenerated discs, our findings demonstrate the importance of early interventions and predifferentiation when planning to use MSCs for reparative treatments.


PLOS ONE | 2014

Regenerative Therapies for Equine Degenerative Joint Disease: A Preliminary Study

Sarah Broeckx; Marieke Zimmerman; Sara Crocetti; Marc Suls; Tom Mariën; Stephen J. Ferguson; Koen Chiers; Luc Duchateau; Alfredo Franco-Obregón; Karin Wuertz; Jan H. Spaas

Degenerative joint disease (DJD) is a major cause of reduced athletic function and retirement in equine performers. For this reason, regenerative therapies for DJD have gained increasing interest. Platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) were isolated from a 6-year-old donor horse. MSCs were either used in their native state or after chondrogenic induction. In an initial study, 20 horses with naturally occurring DJD in the fetlock joint were divided in 4 groups and injected with the following: 1) PRP; 2) MSCs; 3) MSCs and PRP; or 4) chondrogenic induced MSCs and PRP. The horses were then evaluated by means of a clinical scoring system after 6 weeks (T1), 12 weeks (T2), 6 months (T3) and 12 months (T4) post injection. In a second study, 30 horses with the same medical background were randomly assigned to one of the two combination therapies and evaluated at T1. The protein expression profile of native MSCs was found to be negative for major histocompatibility (MHC) II and p63, low in MHC I and positive for Ki67, collagen type II (Col II) and Vimentin. Chondrogenic induction resulted in increased mRNA expression of aggrecan, Col II and cartilage oligomeric matrix protein (COMP) as well as in increased protein expression of p63 and glycosaminoglycan, but in decreased protein expression of Ki67. The combined use of PRP and MSCs significantly improved the functionality and sustainability of damaged joints from 6 weeks until 12 months after treatment, compared to PRP treatment alone. The highest short-term clinical evolution scores were obtained with chondrogenic induced MSCs and PRP. This study reports successful in vitro chondrogenic induction of equine MSCs. In vivo application of (induced) MSCs together with PRP in horses suffering from DJD in the fetlock joint resulted in a significant clinical improvement until 12 months after treatment.


Spine | 2011

Biological Response of the Intervertebral Disc to Repetitive Short-Term Cyclic Torsion

Samantha Chan; Stephen J. Ferguson; Karin Wuertz; Benjamin Gantenbein-Ritter

Study Design. In vitro study of the biological response of the intervertebral disc (IVD) to cyclic torsion by using bovine caudal IVDs. Objective. To evaluate the biological response of the IVD to repetitive cyclic torsion of varying magnitudes at a physiological frequency. Summary of Background Data. Mechanical loading is known to be a risk factor for disc degeneration (DD) but the role of torsion in DD is controversial. It has been suggested that a small magnitude of spinal rotation decreases spinal pressure, increases spinal length, and enhances nutrition exchange in the IVD. However, athletes who participate actively in sports involving torsional movement of the spine are frequently diagnosed with DD and/or disc prolapse. Methods. Bovine caudal discs with end plates were harvested and kept in custom-made chambers for in vitro culture and mechanical stimulation. Torsion was applied to the explants for 1 hour/day over four consecutive days by using a servohydraulic testing machine. The biological response was evaluated by cell viability, metabolic activity, gene expression, glycosaminoglycan content, and histological evaluation. Results. A significantly higher cell viability was found in the inner annulus of the 2˚ torsion group than in the static control group. A trend of decreasing metabolic activity in the nucleus pulposus with increasing torsion magnitude was observed. Apoptotic activity in the nucleus pulposus significantly increased with 5˚ torsion. No statistical significant difference in gene expression was found between the three torsion angles. No visible change in matrix organization could be observed by histological evaluation. Conclusion. The IVD can tolerate short-term repetitive cyclic torsion, as tested in this study. A small angle of cyclic torsion can be beneficial to the IVD in organ culture, possibly by improving nutrition and waste exchange, whereas large torsion angle may cause damage to disc in the long term.


Journal of Biological Chemistry | 2012

Detrimental Role for Human High Temperature Requirement Serine Protease A1 (HTRA1) in the Pathogenesis of Intervertebral Disc (IVD) Degeneration

André N. Tiaden; Marina Klawitter; Vanda Lux; Ali Mirsaidi; Gregor Bahrenberg; Stephan Glanz; Lilian Quero; Thomas Liebscher; Karin Wuertz; Michael Ehrmann; Peter J. Richards

Background: HTRA1 has been associated with intervertebral disc (IVD) degeneration although its role is unknown. Results: HTRA1 up-regulated matrix metalloproteinase (MMP) production by IVD cells via the generation of fibronectin fragments. Conclusion: HTRA1 plays a detrimental role in the pathogenesis of IVD degeneration. Significance: HTRA1 may represent a novel therapeutic target for the treatment of spinal disc degeneration. Human HTRA1 is a highly conserved secreted serine protease that degrades numerous extracellular matrix proteins. We have previously identified HTRA1 as being up-regulated in osteoarthritic patients and as having the potential to regulate matrix metalloproteinase (MMP) expression in synovial fibroblasts through the generation of fibronectin fragments. In the present report, we have extended these studies and investigated the role of HTRA1 in the pathogenesis of intervertebral disc (IVD) degeneration. HTRA1 mRNA expression was significantly elevated in degenerated disc tissue and was associated with increased protein levels. However, these increases did not correlate with the appearance of rs11200638 single nucleotide polymorphism in the promoter region of the HTRA1 gene, as has previously been suggested. Recombinant HTRA1 induced MMP production in IVD cell cultures through a mechanism critically dependent on MEK but independent of IL-1β signaling. The use of a catalytically inactive mutant confirmed these effects to be primarily due to HTRA1 serine protease activity. HTRA1-induced fibronectin proteolysis resulted in the generation of various sized fragments, which when added to IVD cells in culture, caused a significant increase in MMP expression. Furthermore, one of these fragments was identified as being the amino-terminal fibrin- and heparin-binding domain and was also found to be increased within HTRA1-treated IVD cell cultures as well as in disc tissue from patients with IVD degeneration. Our results therefore support a scenario in which HTRA1 promotes IVD degeneration through the proteolytic cleavage of fibronectin and subsequent activation of resident disc cells.

Collaboration


Dive into the Karin Wuertz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James C. Iatridis

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge