Karina Dutra Asensi
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karina Dutra Asensi.
Stem Cells | 2008
Adriana Bastos Carvalho; Luiz Fernando Quintanilha; Juliana Dias; Bruno Diaz Paredes; Elida Gripp Mannheimer; Felipe Gonçalves de Carvalho; Karina Dutra Asensi; Bianca Gutfilen; Lea Mirian Barbosa da Fonseca; Célia Maria Coelho Resende; Guilherme F. M. Rezende; Christina Maeda Takiya; Antonio Carlos Campos de Carvalho; Regina Coeli dos Santos Goldenberg
The objective of our study was to evaluate the therapeutic potential of bone marrow mesenchymal stromal cells (MSC) in a rat model of severe chronic liver injury. Fourteen female Wistar rats were fed exclusively an alcoholic liquid diet and received intraperitoneal injections of carbon tetrachloride every other day during 15 weeks. After this period, eight animals (MSC group) had 1 × 107 cells injected into the portal vein while six animals (placebo group) received vehicle. Blood analysis was performed to evaluate alanine aminotransferase (ALT), aspartate aminotransferase (AST), and albumin before cell therapy and 1 and 2 months after cell or placebo infusion. Fibrosis was evaluated before and 1 month after cell or placebo injection by liver biopsies. Two months after cell delivery, animals were sacrificed and histological analysis of the livers was performed. Fibrosis was quantified by histomorphometry. Biopsies obtained before cell infusion showed intense collagen deposition and septa interconnecting regenerative nodules. One month after cell injection, this result was unaltered and differences in fibrosis quantification were not found between MSC and placebo groups. ALT and AST returned to normal values 2 weeks after cell or placebo infusion, without significant differences between experimental groups. Two months after cell or placebo injection, albumin had also returned to normal values and histological results were maintained, again without differences between MSC and placebo groups. Therefore, under our experimental conditions, MSC were unable to reduce fibrosis or improve liver function in a rat model of severe chronic liver injury.
Glycobiology | 2014
Frederico Alisson-Silva; Deivid C. Rodrigues; Leandro Vairo; Karina Dutra Asensi; Andréia Vasconcelos-dos-Santos; Natalia Rodrigues Mantuano; Wagner B. Dias; Edson Rondinelli; Regina Coeli dos Santos Goldenberg; Turán P. Ürményi; Adriane R. Todeschini
Induced pluripotent stem (iPS) cells are somatic cells that have been reprogrammed to a pluripotent state via the introduction of defined transcription factors. Although iPS is a potentially valuable resource for regenerative medicine and drug development, several issues regarding their pluripotency, differentiation propensity and potential for tumorigenesis remain to be elucidated. Analysis of cell surface glycans has arisen as an interesting tool for the characterization of iPS. An appropriate characterization of glycan surface molecules of human embryonic stem (hES) cells and iPS cells might generate crucial data to highlight their role in the acquisition and maintenance of pluripotency. In this study, we characterized the surface glycans of iPS generated from menstrual blood-derived mesenchymal cells (iPS-MBMC). We demonstrated that, upon spontaneous differentiation, iPS-MBMC present high amounts of terminal β-galactopyranoside residues, pointing to an important role of terminal-linked sialic acids in pluripotency maintenance. The removal of sialic acids by neuraminidase induces iPS-MBMC and hES cells differentiation, prompting an ectoderm commitment. Exposed β-galactopyranose residues might be recognized by carbohydrate-binding molecules found on the cell surface, which could modulate intercellular or intracellular interactions. Together, our results point for the first time to the involvement of the presence of terminal sialic acid in the maintenance of embryonic stem cell pluripotency and, therefore, the modulation of sialic acid biosynthesis emerges as a mechanism that may govern stem cell differentiation.
Critical Care Medicine | 2013
Tatiana Maron-Gutierrez; Johnatas D. Silva; Karina Dutra Asensi; Ilka Bakker-Abreu; Yuexin Shan; Bruno L. Diaz; Regina Coeli dos Santos Goldenberg; Shirley H. J. Mei; Duncan J. Stewart; Marcelo M. Morales; Patricia R.M. Rocco; Claudia C. dos Santos
Objective:Recent evidence suggests that mesenchymal stem cells may attenuate lung inflammation and fibrosis in acute lung injury. However, so far, no study has investigated the effects of mesenchymal stem cell therapy on the time course of the structural, mechanical, and remodeling properties in pulmonary or extrapulmonary acute lung injury. Design:Prospective randomized controlled experimental study. Setting:University research laboratory. Subjects:One hundred forty-three females and 24 male C57BL/6 mice. Interventions:Control mice received saline solution intratracheally (0.05 mL, pulmonary control) or intraperitoneally (0.5 mL, extrapulmonary control). Acute lung injury mice received Escherichia coli lipopolysaccharide intratracheally (2 mg/kg in 0.05 mL of saline/mouse, pulmonary acute lung injury) or intraperitoneally (20 mg/kg in 0.5 mL of saline/mouse, extrapulmonary acute lung injury). Mesenchymal stem cells were intravenously injected (IV, 1 × 105 cells in 0.05 mL of saline/mouse) 1 day after lipopolysaccharide administration. Measurements and Main Results:At days 1, 2, and 7, static lung elastance and the amount of alveolar collapse were similar in pulmonary and extrapulmonary acute lung injury groups. Inflammation was markedly increased at day 2 in both acute lung injury groups as evidenced by neutrophil infiltration and levels of cytokines in bronchoalveolar lavage fluid and lung tissue. Conversely, collagen deposition was only documented in pulmonary acute lung injury. Mesenchymal stem cell mitigated changes in elastance, alveolar collapse, and inflammation at days 2 and 7. Compared with extrapulmonary acute lung injury, mesenchymal stem cell decreased collagen deposition only in pulmonary acute lung injury. Furthermore, mesenchymal stem cell increased metalloproteinase-8 expression and decreased expression of tissue inhibitor of metalloproteinase-1 in pulmonary acute lung injury, suggesting that mesenchymal stem cells may have an effect on the remodeling process. This change may be related to a shift in macrophage phenotype from M1 (inflammatory and antimicrobial) to M2 (wound repair and inflammation resolution) phenotype. Conclusions:Mesenchymal stem cell therapy improves lung function through modulation of the inflammatory and remodeling processes. In pulmonary acute lung injury, a reduction in collagen fiber content was observed associated with a balance between metalloproteinase-8 and tissue inhibitor of metalloproteinase-1 expressions.
Cell Transplantation | 2012
Deivid C. Rodrigues; Karina Dutra Asensi; Leandro Vairo; Ricardo Luiz Azevedo-Pereira; Rosane Silva; Edson Rondinelli; Regina Coeli dos Santos Goldenberg; Antonio Carlos Campos de Carvalho; Turán P. Ürményi
Induced pluripotent stem cells (iPSCs) were originally generated by forced ectopic expression of four transcription factors genes—OCT4, KLF4, SOX2, and c-MYC—in fibroblasts. However, the efficiency of iPSCs obtention is extremely low, and reprogramming takes about 20 days. We reasoned that adult cells showing basal expression of core embryonic stem (ES) cell regulator genes could be a better cell source for reprogramming. Menstrual blood-derived mesenchymal cells (MBMCs) are multipotent cells that show detectable levels of some of the core ES cells regulators. The aim of this study was to determine whether reprogramming efficiency could be increased by using MBMCs as a cell source to generate iPSCs. MBMCs were transduced with recombinant retroviruses expressing the coding regions of OCT4, SOX2, and KLF4 genes. Cells with high nucleus/cytoplasm ratio can be detected about 5 days of posttransduction, and colonies of typical ES-like cells begun to appear after 7 days. At day 15, colonies were picked up and expanded for characterization. Most of the clones were morphologically identical to ES cells and positive at the mRNA and protein levels for all pluripotency markers tested. The clones are capable of forming embryoid bodies and to differentiate in vitro into cells of the three germ cell layers. Our results show that the reprogramming was faster and with efficiency around 2–5%, even in the absence of ectopic expression of c-MYC. To date, this is the first study showing MBMCs as a cell source for nuclear reprogramming.
Journal of Cellular and Molecular Medicine | 2014
Karina Dutra Asensi; Rodrigo S. Fortunato; Danúbia Silva dos Santos; Thaísa S. Pacheco; Danielle F. de Rezende; Deivid C. Rodrigues; Fernanda Cristina Paccola Mesquita; Tais Hanae Kasai-Brunswick; Antonio Carlos Campos de Carvalho; Denise P. Carvalho; Adriana Bastos Carvalho; Regina Coeli dos Santos Goldenberg
Properties of induced pluripotent stem cells (iPSC) have been extensively studied since their first derivation in 2006. However, the modification in reactive oxygen species (ROS) production and detoxification caused by reprogramming still needs to be further elucidated. The objective of this study was to compare the response of iPSC generated from menstrual blood–derived mesenchymal stem cells (mb‐iPSC), embryonic stem cells (H9) and adult menstrual blood–derived mesenchymal stem cells (mbMSC) to ROS exposure and investigate the effects of reprogramming on cellular oxidative stress (OS). mbMSC were extremely resistant to ROS exposure, however, mb‐iPSC were 10‐fold less resistant to H2O2, which was very similar to embryonic stem cell sensitivity. Extracellular production of ROS was also similar in mb‐iPSC and H9 and almost threefold lower than in mbMSC. Furthermore, intracellular amounts of ROS were higher in mb‐iPSC and H9 when compared with mbMSC. As the ability to metabolize ROS is related to antioxidant enzymes, we analysed enzyme activities in these cell types. Catalase and superoxide dismutase activities were reduced in mb‐iPSC and H9 when compared with mbMSC. Finally, cell adhesion under OS conditions was impaired in mb‐iPSC when compared with mbMSC, albeit similar to H9. Thus, reprogramming leads to profound modifications in extracellular ROS production accompanied by loss of the ability to handle OS.
World Journal of Hepatology | 2012
Bruno Diaz Paredes; Lanuza Alaby Pinheiro Faccioli; Luiz Fernando Quintanilha; Karina Dutra Asensi; Camila Zaverucha do Valle; Paulo César Canary; Christina Maeda Takiya; Antonio Carlos Campos de Carvalho; Regina Coeli dos Santos Goldenberg
AIM To investigate the contribution of bone marrow (BM) cells to hepatic fibrosis. METHODS To establish a model of chimerism, C57Bl/6 female mice were subjected to full-body irradiation (7 Gy) resulting in BM myeloablation. BM mononuclear cells obtained from male transgenic mice expressing enhanced green fluorescent protein (GFP) were used for reconstitution. Engraftment was confirmed by flow cytometry. To induce liver injury, chimeric animals received carbon tetrachloride (CCl(4)) 0.5 mL/kg intraperitoneally twice a week for 30 d (CCl(4) 30 d) and age-matched controls received saline (Saline 30 d). At the end of this period, animals were sacrificed for post mortem analysis. Liver samples were stained with hematoxylin and eosin to observe liver architectural changes and with Sirius red for collagen quantification by morphometric analysis. α-smooth muscle actin (α-SMA) was analyzed by confocal microscopy to identify GFP+ cells with myofibroblast (MF) characteristics. Liver tissue, BM and peripheral blood were collected and prepared for flow cytometric analysis using specific markers for detection of hepatic stellate cells (HSCs) and precursors from the BM. RESULTS Injury to the liver induced changes in the hepatic parenchymal architecture, as reflected by the presence of inflammatory infiltrate and an increase in collagen deposition (Saline 30 d = 11.10% ± 1.12% vs CCl(4) 30 d = 12.60% ± 0.73%, P = 0.0329). Confocal microscopy revealed increased reactivity against α-SMA in CCl(4) 30 d compared to Saline 30 d, but there was no co-localization with GFP+ cells, suggesting that cells from BM do not differentiate to MFs. Liver flow cytometric analysis showed a significant increase of CD45+/GFP+ cells in liver tissue (Saline 30 d = 3.2% ± 2.2% vs CCl(4) 30 d = 5.8% ± 1.3%, P = 0.0458), suggesting that this increase was due to inflammatory cell infiltration (neutrophils and monocytes). There was also a significant increase of common myeloid progenitor cells (CD117+/CD45+) in the livers of CCl(4)-treated animals (Saline 30 d = 2.16% ± 1.80% vs CCl(4) 30 d = 5.60% ± 1.30%, P = 0.0142). In addition the GFP-/CD38+/CD45- subpopulation was significantly increased in the CCl(4) 30 d group compared to the Saline 30 d group (17.5% ± 3.9% vs 9.3% ± 2.4%, P = 0.004), indicating that the increase in the activated HSC subpopulation was not of BM origin. CONCLUSION BM progenitor cells do not contribute to fibrosis, but there is a high recruitment of inflammatory cells that stimulates HSCs and MFs of liver origin.
Cell medicine | 2014
Danúbia Silva dos Santos; Vanessa Carvalho Coelho de Oliveira; Karina Dutra Asensi; Leandro Vairo; Adriana Bastos Carvalho; Antonio Carlos Campos de Carvalho; Regina Coeli dos Santos Goldenberg
Human embryonic stem cells (hESCs) in general require coculture with feeder layers in order to remain undifferentiated. However, the use of animal-derived feeder layers is incompatible with the clinical setting. The objective of this work was to investigate whether human menstrual blood-derived mesenchymal cells (MBMCs) can substitute mouse embryonic fibroblasts (MEFs) as a feeder layer for H9-hESCs. Both feeder cell types were isolated and cultured in DMEM F-12 and high glucose DMEM, respectively. After three passages, they were inactivated with mitomycin C. To test MBMC feeder layer capacity, hESCs were grown over MBMCs and MEFs under standard conditions. hESC growth, proliferation, survival, and maintenance of the undifferentiated state were evaluated. hESCs grown over MBMCs preserved their undifferentiated state presenting standard morphology, expressing alkaline phosphatase, transcription factors OCT3/4, SOX2, and NANOG by RT-PCR and SSEA-4 and OCT3/4 by immunofluorescence assays. It is noteworthy that none of the feeder cells expressed these proteins. The average colony size of the hESCs on MBMCs was higher when compared to MEFs (p < 0.05; mean ± SD, n = 3). Growth factor analysis revealed amplification of the transcripts for FGF-2, BMP4, TGF-β, VEGF, and PEDF by RT-PCR in MBMCs and MEFs before and after inactivation. Furthermore, similar embryoid body formation, size, and morphology were observed in both feeder layers. In addition, EBs expressed marker genes for the three germ layers cultured on both feeder cells. In conclusion, MBMCs are able to maintain hESCs in an undifferentiated state with comparable efficiency to MEFs. Therefore, MBMCs are a suitable alternative to animal-derived feeder layers for growing hESCs.
Interseções: Revista de Estudos Interdisciplinares | 2018
Daniela Tonelli Manica; Regina Coeli dos Santos Goldenberg; Karina Dutra Asensi
Mesenchymal Stromal Cells as Tumor Stromal Modulators | 2016
Regina Coeli dos Santos Goldenberg; D.B. Mello; Karina Dutra Asensi
american thoracic society international conference | 2011
Tatiana Maron-Gutierrez; Johnatas D. Silva; Karina Dutra Asensi; Vera Luiza Capelozzi; Regina Coeli dos Santos Goldenberg; Marcelo M. Morales; Patricia R.M. Rocco; Claudia C. dos Santos
Collaboration
Dive into the Karina Dutra Asensi's collaboration.
Regina Coeli dos Santos Goldenberg
Federal University of Rio de Janeiro
View shared research outputs