Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karina V. R. Schäfer is active.

Publication


Featured researches published by Karina V. R. Schäfer.


Nature | 2001

Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere.

Ram Oren; David S. Ellsworth; Kurt H. Johnsen; Nathan Phillips; Brent E. Ewers; Chris A. Maier; Karina V. R. Schäfer; Heather R. McCarthy; George R. Hendrey; Steven G. McNulty; Gabriel G. Katul

Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in particular nitrogen. Here we present evidence that estimates of increases in carbon sequestration of forests, which is expected to partially compensate for increasing CO2 in the atmosphere, are unduly optimistic. In two forest experiments on maturing pines exposed to elevated atmospheric CO2, the CO2-induced biomass carbon increment without added nutrients was undetectable at a nutritionally poor site, and the stimulation at a nutritionally moderate site was transient, stabilizing at a marginal gain after three years. However, a large synergistic gain from higher CO2 and nutrients was detected with nutrients added. This gain was even larger at the poor site (threefold higher than the expected additive effect) than at the moderate site (twofold higher). Thus, fertility can restrain the response of wood carbon sequestration to increased atmospheric CO2. Assessment of future carbon sequestration should consider the limitations imposed by soil fertility, as well as interactions with nitrogen deposition.


Oecologia | 2000

Influence of soil porosity on water use in Pinus taeda

Uwe G. Hacke; John S. Sperry; Brent E. Ewers; David S. Ellsworth; Karina V. R. Schäfer; Ram Oren

Abstract We analyzed the hydraulic constraints imposed on water uptake from soils of different porosities in loblolly pine (Pinus taeda L.) by comparing genetically related and even-aged plantations growing in loam versus sand soil. Water use was evaluated relative to the maximum transpiration rate (Ecrit) allowed by the soil-leaf continuum. We expected that trees on both soils would approach Ecrit during drought. Trees in sand, however, should face greater drought limitation because of steeply declining hydraulic conductivity in sand at high soil water potential (ΨS). Transport considerations suggest that trees in sand should have higher root to leaf area ratios (AR:AL), less negative leaf xylem pressure (ΨL), and be more vulnerable to xylem cavitation than trees in loam. The AR:AL was greater in sand versus loam (9.8 vs 1.7, respectively). This adjustment maintained about 86% of the water extraction potential for both soils. Trees in sand were more deeply rooted (>1.9 m) than in loam (95% of roots <0.2 m), allowing them to shift water uptake to deeper layers during drought and avoid hydraulic failure. Midday ΨL was constant for days of high evaporative demand, but was less negative in sand (–1.6 MPa) versus loam (–2.1 MPa). Xylem was more vulnerable to cavitation in sand versus loam trees. Roots in both soils were more vulnerable than stems, and experienced the greatest predicted loss of conductivity during drought. Trees on both soils approached Ecrit during drought, but at much higher ΨS in sand (<–0.4 MPa) than in loam (<–1.0 MPa). Results suggest considerable phenotypic plasticity in water use traits for P. taeda which are adaptive to differences in soil porosity.


Ecological Monographs | 2001

ELEVATED CO2 DIFFERENTIATES ECOSYSTEM CARBON PROCESSES: DECONVOLUTION ANALYSIS OF DUKE FOREST FACE DATA

Yiqi Luo; Lianhai Wu; Jeffrey A. Andrews; Luther W. White; Roser Matamala; Karina V. R. Schäfer; William H. Schlesinger

Quantification of the flux of carbon (C) through different pathways is critical to predict the impact of global change on terrestrial ecosystems. Past research has en- countered considerable difficulty in separating root exudation, root turnover rate, and other belowground C fluxes as affected by elevated CO2. In this study we adopted a deconvolution analysis to differentiate C flux pathways in forest soils and to quantify the flux through those pathways. We first conducted forward analysis using a terrestrial-C sequestration (TCS) model to generate four alternative patterns of convolved responses of soil surface respiration to a step increase in atmospheric CC)2. The model was then validated against measured soil respiration at ambient CO2 before it was used to deconvolve the CO2 stim- ulation of soil respiration. Deconvolved data from the Duke Forest free-air CO2 enrichment (FACE) experiment suggest that fast C transfer processes, e.g., root exudation, are of minor importance in the ecosystem C cycling in the Duke Forest and were not affected by elevated CO2. The analysis indicates that the fine-root turnover is a major process adding C to the rhizosphere. This C has a residence time of several months to -2 yr and increases signif- icantly with increased CO2. In addition, the observed phase shift in soil respiration caused by elevated CO2 can be only reproduced by incorporation of a partial time delay function in C fluxes into the model. This paper also provides a detailed explanation of deconvolution analysis, since it is a relatively new research technique in ecology.


Tree Physiology | 2010

Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration

Jean-Christophe Domec; Karina V. R. Schäfer; Ram Oren; Hyun S. Kim; Heather R. McCarthy

Anatomical and physiological acclimation to water stress of the tree hydraulic system involves trade-offs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here, we study the role of variations in root and branch maximum hydraulic specific conductivity (k(s-max)) under high and low soil moisture in determining whole-tree hydraulic conductance (K(tree)) and in mediating stomatal control of gas exchange in four contrasting tree species growing under ambient and elevated CO₂ (CO₂(a) and CO₂(e)). We hypothesized that K(tree) would adjust to CO₂(e) through an increase in root and branch k(s-max) in response to anatomical adjustments. However, physiological changes observed under CO₂(e) were not clearly related to structural change in the xylem of any of the species. The only large effect of CO₂(e) occurred in branches of Liquidambar styraciflua L. and Cornus florida L. where an increase in k(s-max) and a decrease in xylem resistance to embolism (-P₅₀) were measured. Across species, embolism in roots explained the loss of K(tree) and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of G(s-ref), the sap-flux-scaled mean canopy stomatal conductance at a reference vapour pressure deficit of 1 kPa. Across roots and branches, the increase in k(s-max) was associated with a decrease in -P₅₀, a consequence of structural acclimation such as larger conduits, lower pit resistance and lower wood density. Across species, treatment-induced changes in K(tree) translated to similar variation in G(s-ref). However, the relationship between G(s-ref) and K(tree) under CO₂(a) was steeper than under CO₂(e), indicating that CO₂(e) trees have lower G(s-ref) at a given K(tree) than CO₂(a) trees. Under high soil moisture, CO₂(e) greatly reduced G(s-ref). Under low soil moisture, CO₂(e) reduced G(s-ref) of only L. styraciflua and Ulmus alata. In some species, higher xylem dysfunction under CO₂(e) might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and anatomical mechanisms underpinning the responses of tree species to drought and more generally to global change.


Journal of Geophysical Research | 2014

Species‐specific transpiration responses to intermediate disturbance in a northern hardwood forest

Ashley M. Matheny; Gil Bohrer; Christoph S. Vogel; Timothy H. Morin; Lingli He; Renato Prata de Moraes Frasson; Golnazalsadat Mirfenderesgi; Karina V. R. Schäfer; Christopher M. Gough; Valeriy Y. Ivanov; Peter S. Curtis

Intermediate disturbances shape forest structure and composition, which may in turn alter carbon, nitrogen, and water cycling. We used a large-scale experiment in a forest in northern lower Michigan where we prescribed an intermediate disturbance by stem girdling all canopy-dominant early successional trees to simulate an accelerated age-related senescence associated with natural succession. Using 3 years of eddy covariance and sap flux measurements in the disturbed area and an adjacent control plot, we analyzed disturbance-induced changes to plot level and species-specific transpiration and stomatal conductance. We found transpiration to be ~15% lower in disturbed plots than in unmanipulated control plots. However, species-specific responses to changes in microclimate varied. While red oak and white pine showed increases in stomatal conductance during postdisturbance (62.5 and 132.2%, respectively), red maple reduced stomatal conductance by 36.8%. We used the hysteresis between sap flux and vapor pressure deficit to quantify diurnal hydraulic stress incurred by each species in both plots. Red oak, a ring porous anisohydric species, demonstrated the largest mean relative hysteresis, while red maple, bigtooth aspen, and paper birch, all diffuse porous species, had the lowest relative hysteresis. We employed the Penman-Monteith model for LE to demonstrate that these species-specific responses to disturbance are not well captured using current modeling strategies and that accounting for changes to leaf area index and plot microclimate are insufficient to fully describe the effects of disturbance on transpiration.


Journal of Geophysical Research | 2014

Environmental drivers of methane fluxes from an urban temperate wetland park

Timothy H. Morin; Gil Bohrer; Renato Prata de Moraes Frasson; L. Naor‐Azreli; S. Mesi; Kay C. Stefanik; Karina V. R. Schäfer

Methane (CH4) emissions were measured at the Wilma H. Schiermeier Olentangy River Wetland Research Park (ORWRP) over three summers and two winters using an eddy covariance system. We used an empirical model to determine the main environmental drivers of methane emissions. Methane emissions covary strongly with water vapor fluxes, CO2 fluxes, and soil temperature. We adjust our models to account for the heterogeneous environment of the wetland by including the flux footprint distribution among different microsites as a predictive variable in the methane model. We used a forward linear stepwise model in combination with an Akaike information criteria-based model selection process and neural network modeling to determine which environmental variables are most effective in modeling methane emissions in our site. Different models and environmental variables best represented methane fluxes in the winter and summer and also during the day or night within each season. We parameterized an optimal empirical model for methane emissions from the ORWRP that is used for gap filling of site-level methane fluxes over 2 years. Some of the most effective variables for modeling methane were carbon, water vapor, and heat fluxes, all of which typically have the same data gaps as the time series of methane flux. In order to determine if these variables were useful for modeling methane despite the additional gap-filling error, we determined through an error propagation experiment that eddy covariance gap-filling models for methane may be best developed by including other gap-filled fluxes as predictors, despite the high level of shared gaps and subsequent gap-fill error propagation.


Frontiers in Plant Science | 2011

Canopy stomatal conductance following drought, disturbance, and death in an upland oak/pine forest of the New Jersey Pine Barrens, USA

Karina V. R. Schäfer

Stomatal conductance controls carbon and water fluxes in forest ecosystems. Therefore, its accurate characterization in land-surface flux models is necessary. Sap-flux scaled canopy conductance was used to evaluate the effect of drought, disturbance, and mortality of three oak species (Quercus prinus, Q. velutina, and Q. coccinea) in an upland oak/pine stand in the New Jersey Pine Barrens from 2005 to 2008. Canopy conductance (GC) was analyzed by performing boundary line analysis and selecting for the highest value under a given light condition. Regressing GC with the driving force vapor pressure deficit (VPD) resulted in reference canopy conductance at 1 kPa VPD (GCref). Predictably, drought in 2006 caused GCref to decline. Q. prinus GCref was least affected, followed by Q. coccinea, with Q. velutina having the highest reductions in GCref. A defoliation event in 2007 caused GCref to increase due to reduced leaf area and a possible increase in water availability. In Q. prinus, GCref quadrupled, while doubling in Q. velutina, and increasing by 50% in Q. coccinea. Tree mortality in 2008 led to higher GCref in the remaining Q. prinus but not in Q. velutina or Q. coccinea. Comparing light response curves of canopy conductance (GCref) and stomatal conductance (gS) derived from gas-exchange measurements showed marked differences in behavior. Canopy GCref failed to saturate under ambient light conditions whereas leaf-level gS saturated at 1,200 μmol m−2 s−1. The results presented here emphasize the differential responses of leaf and canopy-level conductance to saturating light conditions and the effects of various disturbances (drought, defoliation, and mortality) on the carbon and water balance of an oak-dominated forest.


Frontiers in Plant Science | 2012

Comparison of Tissue Heat Balance- and Thermal Dissipation-Derived Sap Flow Measurements in Ring-Porous Oaks and a Pine

Heidi J. Renninger; Karina V. R. Schäfer

Sap flow measurements have become integral in many physiological and ecological investigations. A number of methods are used to estimate sap flow rates in trees, but probably the most popular is the thermal dissipation (TD) method because of its affordability, relatively low power consumption, and ease of use. However, there have been questions about the use of this method in ring-porous species and whether individual species and site calibrations are needed. We made concurrent measurements of sap flow rates using TD sensors and the tissue heat balance (THB) method in two oak species (Quercus prinus Willd. and Quercus velutina Lam.) and one pine (Pinus echinata Mill.). We also made concurrent measurements of sap flow rates using both 1 and 2-cm long TD sensors in both oak species. We found that both the TD and THB systems tended to match well in the pine individual, but sap flow rates were underestimated by 2-cm long TD sensors in five individuals of the two ring-porous oak species. Underestimations of 20–35% occurred in Q. prinus even when a “Clearwater” correction was applied to account for the shallowness of the sapwood depth relative to the sensor length and flow rates were underestimated by up to 50% in Q. velutina. Two centimeter long TD sensors also underestimated flow rates compared with 1-cm long sensors in Q. prinus, but only at large flow rates. When 2-cm long sensor data in Q. prinus were scaled using the regression with 1-cm long data, daily flow rates matched well with the rates measured by the THB system. Daily plot level transpiration estimated using TD sap flow rates and scaled 1 cm sensor data averaged about 15% lower than those estimated by the THB method. Therefore, these results suggest that 1-cm long sensors are appropriate in species with shallow sapwood, however more corrections may be necessary in ring-porous species.


Journal of Geophysical Research | 2014

Dynamics of methane ebullition from a peat monolith revealed from a dynamic flux chamber system

Zhongjie Yu; Lee Slater; Karina V. R. Schäfer; Andrew S. Reeve; Ruth K. Varner

Methane (CH4) ebullition in northern peatlands is poorly quantified in part due to its high spatiotemporal variability. In this study, a dynamic flux chamber (DFC) system was used to continuously measure CH4 fluxes from a monolith of near-surface Sphagnum peat at the laboratory scale to understand the complex behavior of CH4 ebullition. Coincident transmission ground penetrating radar measurements of gas content were also acquired at three depths within the monolith. A graphical method was developed to separate diffusion, steady ebullition, and episodic ebullition fluxes from the total CH4 flux recorded and to identify the timing and CH4 content of individual ebullition events. The results show that the application of the DFC had minimal disturbance on air-peat CH4 exchange and estimated ebullition fluxes were not sensitive to the uncertainties associated with the graphical model. Steady and episodic ebullition fluxes were estimated to be averagely 36 ± 24% and 38 ± 24% of the total fluxes over the study period, respectively. The coupling between episodic CH4 ebullition and gas content within the three layers supports the existence of a threshold gas content regulating CH4 ebullition. However, the threshold at which active ebullition commenced varied between peat layers with a larger threshold (0.14 m3 m−3) observed in the deeper layers, suggesting that the peat physical structure controls gas bubble dynamics in peat. Temperature variation (23°C to 27°C) was likely only responsible for small episodic ebullition events from the upper peat layer, while large ebullition events from the deeper layers were most likely triggered by drops in atmospheric pressure.


Journal of Geophysical Research | 2016

Tree level hydrodynamic approach for resolving aboveground water storage and stomatal conductance and modeling the effects of tree hydraulic strategy

Golnazalsadat Mirfenderesgi; Gil Bohrer; Ashley M. Matheny; Simone Fatichi; Renato Prata de Moraes Frasson; Karina V. R. Schäfer

The finite difference ecosystem-scale tree crown hydrodynamics model version 2 (FETCH2) is a tree-scale hydrodynamic model of transpiration. The FETCH2 model employs a finite difference numerical methodology and a simplified single-beam conduit system to explicitly resolve xylem water potentials throughout the vertical extent of a tree. Empirical equations relate water potential within the stem to stomatal conductance of the leaves at each height throughout the crown. While highly simplified, this approach brings additional realism to the simulation of transpiration by linking stomatal responses to stem water potential rather than directly to soil moisture, as is currently the case in the majority of land surface models. FETCH2 accounts for plant hydraulic traits, such as the degree of anisohydric/isohydric response of stomata, maximal xylem conductivity, vertical distribution of leaf area, and maximal and minimal xylem water content. We used FETCH2 along with sap flow and eddy covariance data sets collected from a mixed plot of two genera (oak/pine) in Silas Little Experimental Forest, NJ, USA, to conduct an analysis of the intergeneric variation of hydraulic strategies and their effects on diurnal and seasonal transpiration dynamics. We define these strategies through the parameters that describe the genus level transpiration and xylem conductivity responses to changes in stem water potential. Our evaluation revealed that FETCH2 considerably improved the simulation of ecosystem transpiration and latent heat flux in comparison to more conventional models. A virtual experiment showed that the model was able to capture the effect of hydraulic strategies such as isohydric/anisohydric behavior on stomatal conductance under different soil-water availability conditions.

Collaboration


Dive into the Karina V. R. Schäfer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth L. Clark

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas Skowronski

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

David S. Ellsworth

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar

Chun-Ta Lai

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge