Karine Blouin
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karine Blouin.
The Journal of Steroid Biochemistry and Molecular Biology | 2008
Karine Blouin; Ariane Boivin; André Tchernof
An important sex difference in body fat distribution is generally observed. Men are usually characterized by the android type of obesity, with accumulation of fat in the abdominal region, whereas women often display the gynoid type of obesity, with a greater proportion of their body fat in the gluteal-femoral region. Accordingly, the amount of fat located inside the abdominal cavity (intra-abdominal or visceral adipose tissue) is twice as high in men compared to women. This sex difference has been shown to explain a major portion of the differing metabolic profiles and cardiovascular disease risk in men and women. Association studies have shown that circulating androgens are negatively associated with intra-abdominal fat accumulation in men, which explains an important portion of the link between low androgens and features of the metabolic syndrome. In women, the low circulating sex hormone-binding globulin (SHBG) levels found in abdominal obesity may indirectly indicate that elevated free androgens are related to increased visceral fat accumulation. However, data on non SHBG-bound and total androgens are not unanimous and difficult to interpret for total androgens. These studies focusing on plasma levels of sex hormones indirectly suggest that androgens may alter adipose tissue mass in a depot-specific manner. This could occur through site-specific modulation of preadipocyte proliferation and/or differentiation as well as lipid synthesis and/or lipolysis in mature adipocytes. Recent results on the effects of androgens in cultured adipocytes and adipose tissue have been inconsistent, but may indicate decreased adipogenesis and increased lipolysis upon androgen treatment. Finally, adipose tissue has been shown to express several steroidogenic and steroid-inactivating enzymes. Their mere presence in fat indirectly supports the notion of a highly complex enzymatic system modulating steroid action on a local basis. Recent data obtained in both men and women suggest that enzymes from the aldoketoreductase 1C family are very active and may be important modulators of androgen action in adipose tissue.
Molecular and Cellular Endocrinology | 2009
Karine Blouin; Alain Veilleux; Van Luu-The; André Tchernof
Androgens modulate adipocyte function and affect the size of adipose tissue compartments in humans. Aldo-keto reductase 1C (AKR1C) enzymes, especially AKR1C2 and AKR1C3, through local synthesis and inactivation of androgens, may be involved in the fine regulation of androgen availability in adipose tissue. This review article summarizes recent findings on androgen metabolism in adipose tissue. Primary culture models and whole tissue specimens of human adipose tissue obtained from the abdominal subcutaneous and intra-abdominal (omental) fat compartments were used in our studies. The non-aromatizable androgen dihydrotestosterone (DHT) inhibits adipocyte differentiation in subcutaneous and omental adipocytes in humans. This inhibitory effect is partially reversed by anti-androgens. Activity and mRNA expression of AKR1C1, 2 and 3 were detected in SC and OM adipose tissue, in men and women, with higher levels in the SC depot than the omental depot of both sexes. The abundance of AKR1C enzyme mRNAs was particularly elevated compared to other steroid-converting enzymes. Significant positive associations were observed between AKR1C enzyme mRNA levels or DHT inactivation rates and visceral fat accumulation as well as OM adipocyte size in women and in men, at least in the normal weight to moderately obese range. Mature adipocytes had significantly higher DHT inactivation rates compared to preadipocytes. Accordingly, adipocyte differentiation significantly increased AKR1C enzyme expression and DHT inactivation rates. Treatment of preadipocytes with dexamethasone alone led to significant increases in the formation of 5alpha-androstan-3alpha,17beta-diol. This stimulation was completely abolished by RU486, suggesting that androgen inactivation is stimulated by a glucocorticoid receptor-dependent mechanism. In conclusion, higher AKR1C activity and expression in mature adipocytes may explain the associations between these enzymes and obesity. We speculate that glucocorticoid-induced androgen inactivation could locally decrease the exposure of adipose cells to active androgens and partially remove their inhibitory effect on adipogenesis. We hypothesize that body fat distribution patterns likely emerge from the local adipose tissue balance between active androgens and glucocorticoids in each fat compartment.
Clinical Endocrinology | 2010
Karine Blouin; Mélanie Nadeau; Martin Perreault; Alain Veilleux; Renée Drolet; Picard Marceau; Jacques Mailloux; Van Luu-The; André Tchernof
Objective To examine the effects of aromatizable or nonaromatizable androgens on abdominal subcutaneous (SC) and omental (OM) adipose tissue lipid metabolism and adipogenesis in men and women.
American Journal of Physiology-endocrinology and Metabolism | 2009
Karine Blouin; Mélanie Nadeau; Jacques Mailloux; Marleen Daris; Stephane Lebel; Van Luu-The; André Tchernof
The objective was to examine pathways of androgen metabolism in abdominal adipose tissue in women. Abdominal subcutaneous (SC) and omental (OM) adipose tissue samples were surgically obtained in women. Total RNA was isolated from whole adipose tissue samples and from primary preadipocyte cultures before and after induction of differentiation. Expression levels of several steroid-converting enzyme transcripts were examined by real-time RT-PCR. Androgen conversion rates were also measured. We found higher expression levels in SC compared with OM adipose tissue for type 1 3beta-hydroxysteroid dehydrogenase (3beta-HSD-1; P < 0.05), for aldo-keto reductase 1C3 (AKR1C3; P < 0.0001), for AKR1C2 (P < 0.0001), and for the androgen receptor (P < 0.0001). 17beta-HSD-2 mRNA levels were lower in SC adipose tissue (P < 0.05). Induction of adipocyte differentiation led to significantly increased expression levels in SC cultures for AKR1C3 (4.7-fold, P < 0.01), 11-cis-retinol dehydrogenase (6.9-fold, P < 0.02), AKR1C2 (5.6-fold, P < 0.004), P-450 aromatase (5.7-fold, P < 0.02), steroid sulfatase (3.1-fold, P < 0.02), estrogen receptor-beta (11.8-fold, P < 0.01), and the androgen receptor (4.0-fold, P < 0.0005). Generally similar but nonsignificant trends were obtained in OM cultures. DHT inactivation rates increased with differentiation, this effect being mediated by dexamethasone alone, through a glucocorticoid receptor-dependent mechanism. In conclusion, higher mRNA levels of enzymes synthesizing and inactivating androgens are found in differentiated adipocytes, consistent with higher androgen-processing rates in these cells. Glucocorticoid-induced androgen inactivation may locally modulate the exposure of adipose cells to active androgens.
Nutrition Reviews | 2008
Anne-Sophie Morisset; Karine Blouin; André Tchernof
This review summarizes studies on the effect of various diets on circulating androgen levels and sex hormone-binding globulin (SHBG). Reduced caloric intake leading to significant weight loss increases SHBG levels regardless of diet composition, particularly in women. Cross-sectional studies show that dietary composition is generally not associated with SHBG levels independent of obesity level. No clear conclusion can be reached regarding the effect of various eating habits or dietary composition on circulating androgens. The evidence indicates that dietary effects on circulating SHBG, and possibly androgens, can be expected if body weight or fatness and/or insulin homeostasis are modulated.
Metabolism-clinical and Experimental | 2009
Alain Veilleux; Karine Blouin; Caroline Rhéaume; Marleen Daris; André Marette; André Tchernof
Insulin receptor substrate-1 (IRS-1) and glucose transporter 4 (GLUT4) expression may provide an indirect reflection of the capacity of adipocytes to respond to insulin stimulation. We examined messenger RNA (mRNA) expression of these genes in omental and subcutaneous adipose tissue of women. Paired omental and subcutaneous adipose tissue samples were obtained from 36 women (age, 47 +/- 5 years; body mass index, 28.0 +/- 5.4 kg/m(2)) undergoing gynecologic surgeries. Total adiposity and visceral adiposity were assessed by dual-energy x-ray absorptiometry and computed tomography. The GLUT4 and IRS-1 mRNA expression levels were both significantly higher in subcutaneous compared with omental adipose tissue. A negative correlation was observed between body fat percentage and subcutaneous adipose tissue GLUT4 (r = -0.39, P < .05) and IRS-1 (r = -0.30, P < .08) mRNA abundance. However, in omental fat, only GLUT4 mRNA was inversely associated with body fat percentage (r = -0.53, P < .001). Moreover, the homeostasis model assessment of insulin resistance index was associated with mRNA expression of subcutaneous GLUT4 (r = -0.56, P < .001), subcutaneous IRS-1 (r = -0.51, P < .01), and omental GLUT4 (r = -0.54, P < .001), but not omental IRS-1. Interestingly, plasma adiponectin was only associated with subcutaneous GLUT4 (r = 0.48, P < .01) and IRS-1 (r = 0.48, P < .05) mRNA expression. The GLUT4 protein, unlike mRNA expression, was higher in omental than in subcutaneous adipose tissue. However, abdominal obesity-related differences in protein or mRNA expression were similar. Omental IRS-1 expression was low and unaffected by visceral obesity. In contrast, omental and subcutaneous GLUT4 as well as subcutaneous IRS-1 were reduced in visceral obesity. This divergent pattern of expression may reflect a lower capacity of omental adipose tissue to respond to insulin stimulation at all adiposity levels.
American Journal of Physiology-endocrinology and Metabolism | 2012
Alain Veilleux; Julie-Anne Côté; Karine Blouin; Mélanie Nadeau; Mélissa Pelletier; Picard Marceau; Philippe Y. Laberge; Van Luu-The; André Tchernof
Adipogenesis and lipid storage in human adipose tissue are inhibited by androgens such as DHT. Inactivation of DHT to 3α-diol is stimulated by glucocorticoids in human preadipocytes. We sought to characterize glucocorticoid-induced androgen inactivation in human preadipocytes and to establish its role in the antiadipogenic action of DHT. Subcutaneous and omental primary preadipocyte cultures were established from fat samples obtained in subjects undergoing abdominal surgeries. Inactivation of DHT to 3α/β-diol for 24 h was measured in dexamethasone- or vehicle-treated cells. Specific downregulation of aldo-keto reductase 1C (AKR1C) enzymes in human preadipocytes was achieved using RNA interference. In whole adipose tissue sample, cortisol production was positively correlated with androgen inactivation in both subcutaneous and omental adipose tissue (P < 0.05). Maximal dexamethasone (1 μM) stimulation of DHT inactivation was higher in omental compared with subcutaneous fat from men as well as subcutaneous and omental fat from women (P < 0.05). A significant positive correlation was observed between BMI and maximal dexamethasone-induced DHT inactivation rates in subcutaneous and omental adipose tissue of men and women (r = 0.24, n = 26, P < 0.01). siRNA-induced downregulation of AKR1C2, but not AKR1C1 or AKR1C3, significantly reduced basal and glucocorticoid-induced androgen inactivation rates (P < 0.05). The inhibitory action of DHT on preadipocyte differentiation was potentiated following AKR1C2 but not AKR1C1 or AKR1C3 downregulation. Specifically, lipid accumulation, G3PDH activity, and FABP4 mRNA expression in differentiated preadipocytes exposed to DHT were reduced further upon AKR1C2 siRNA transfection. We conclude that glucocorticoid-induced androgen inactivation is mediated by AKR1C2 and is particularly effective in omental preadipocytes of obese men. The interplay between glucocorticoids and AKR1C2-dependent androgen inactivation may locally modulate adipogenesis and lipid accumulation in a depot-specific manner.
Cells Tissues Organs | 2008
Catherine Gérard; Karine Blouin; André Tchernof; Charles J. Doillon
Bone marrow-derived mesenchymal stem cells (i.e., adherent cells) are known to differentiate into fat tissue in the presence of adipogenic supplements in cultures. Induction of adipogenesis has not been investigated within the nonadherent cell fraction that includes predominantly hematopoietic cells. In the present study, murine nonadherent bone marrow-derived stem cells (96% CD45+ cells) were seeded and then grown in fibrin gel to form cell clusters in which most cells were positive to DiI-acetylated low-density lipoprotein uptake. Amongst different culture media supplemented either in fetal bovine serum, horse serum, murine plasma, human plasma or adipogenic supplements, a subpopulation of nonadherent stem cells within clusters differentiated into adipocytes, specifically in the presence of adult syngeneic plasma. This was confirmed by the observation and quantification of oil red O-positive cells, the measurement of glycerol-3-phosphate dehydrogenase activity and peroxisome proliferator-activated receptor-γ mRNA expression. Similarly, adipogenesis was also observed in the presence of murine plasma with adherent mesenchymal stem cells and 3T3-L1 preadipocytes which were grown either in monolayer plastic cultures or in fibrin gel. Thus, it is possible that nonadherent cells, once in a 3-dimensional environment, can further differentiate towards adipogenesis.
Clinical Lipidology | 2009
Alain Veilleux; Karine Blouin; André Tchernof
Abstract Androgens are involved in the modulation of adipose tissue function and body fat distribution in humans. The mechanisms involved include signaling through the androgen receptor and its coregulators as well as the crosstalk of several intracellular signaling pathways. Local modulation of androgen concentrations by steroid-converting enzymes, such as aldo—keto reductases 1C is associated with visceral fat accumulation and omental adipocyte enlargement. A recent study suggested that local androgen metabolism may be regulated by glucocorticoids in preadipocytes. Together, the available literature suggests that androgens possibly affect human body fat distribution through several potential mechanisms. This review article summarizes in vitro and in vivo findings on androgenic effects in adipose tissue, with a specific emphasis on signaling and pre-receptor regulation of androgen availability
Metabolic Syndrome and Related Disorders | 2007
Karine Blouin; Julie Robitaille; Chantal Bélanger; Bénédicte Fontaine-Bisson; Patrick Couture; Marie-Claude Vohl; André Tchernof
BACKGROUND Low circulating sex hormone-binding globulin (SHBG) concentrations have been associated with the presence of several features of the metabolic syndrome in both men and women. Nutritional factors including dietary lipids and fibers in particular have been suggested to modulate plasma SHBG levels. METHODS The primary objective of the present study was to investigate the effect of an oat bran-rich supplement in conjunction with the National Cholesterol Education Program (NCEP) Step 1 diet (< 30% of total energy from fat, < 10% of energy from saturated fat, and < 300 mg cholesterol per day) on plasma SHBG levels in 35 overweight premenopausal women. Subjects (age 38.6 +/- 7.4 years) had normal menstrual cycles and were tested in the midluteal phase. Since no effect of the oat bran supplement was observed on plasma SHBG levels, data were analyzed according to the 6-week NCEP Step 1 diet. RESULTS The NCEP Step 1 nutritional intervention caused a significant decrease in energy intake ( -11%, p < 0.05), percent fat intake (-10%, p < 0.005), as well as saturated (-20%, p < 0.005) and monounsaturated (-10%, p < 0.05) fatty acid intake. Body mass index (BMI) decreased slightly but significantly (from 29.2 +/- 4.5 to 28.8 +/- 4.3 kg/m(2), p < 0.005). Plasma SHBG levels increased significantly (from 70.6 +/- 17.7 to 79.9 +/- 15.3 pmol/L, p < 0.0005) following the 6-week NCEP Step 1 diet, whereas plasma insulin levels were not modified significantly. Significant correlations were observed between the change in plasma SHBG levels and baseline BMI (r = 0.36, p < 0.04), as well as baseline (r = -0.42, p < 0.05) and postintervention (r = -0.35, p < 0.05) HDL cholesterol levels. CONCLUSIONS We observed that a 6-week NCEP Step 1 diet significantly increased plasma SHBG levels, despite the finding that fasting insulin was not modified. Further studies are needed to elucidate physiological mechanisms underlying a direct effect of dietary composition on SHBG production by the liver.