Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karine Frénal is active.

Publication


Featured researches published by Karine Frénal.


Cell Host & Microbe | 2010

Functional Dissection of the Apicomplexan Glideosome Molecular Architecture

Karine Frénal; Valérie Polonais; Jean-Baptiste Marq; Rolf Stratmann; Julien Limenitakis; Dominique Soldati-Favre

The glideosome of apicomplexan parasites is an actin- and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N- and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.


Traffic | 2013

Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion

Karine Frénal; Chwen L. Tay; Christina Mueller; Ellen Bushell; Yonggen Jia; Arnault Graindorge; Oliver Billker; Julian C. Rayner; Dominique Soldati-Favre

The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S‐acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp‐His‐His‐Cys cysteine‐rich domain (DHHC‐CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan‐specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasites ability to egress.


PLOS Pathogens | 2014

Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion

Karine Frénal; Jean-Baptiste Marq; Damien Jacot; Valérie Polonais; Dominique Soldati-Favre

The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMC-associated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival.


Traffic | 2011

Unusual anchor of a motor complex (MyoD-MLC2) to the plasma membrane of Toxoplasma gondii.

Valérie Polonais; Bernardo J. Foth; Krishna Chinthalapudi; Jean-Baptiste Marq; Dietmar J. Manstein; Dominique Soldati-Favre; Karine Frénal

Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain described to date is MLC1, associated with myosin A, and contributing to gliding motility. In this study, we examined the repertoire of calmodulin‐like proteins in Apicomplexans, identified six putative myosin light chains and determined their subcellular localization in T. gondii and Plasmodium falciparum. MLC2, only found in coccidians, is associated with myosin D via its calmodulin (CaM)‐like domain and anchored to the plasma membrane of T. gondii via its N‐terminal extension. Molecular modeling suggests that the MyoD–MLC2 complex is more compact than the reported structure of Plasmodium MyoA–myosin A tail‐interacting protein (MTIP) complex. Anchorage of this MLC2 to the plasma membrane is likely governed by palmitoylation.


PLOS Pathogens | 2013

The Plasmodium berghei Ca2+/H+ Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca2+ during Sexual Development

David S. Guttery; Jon K. Pittman; Karine Frénal; Benoit Poulin; Leon R. McFarlane; Ksenija Slavic; Sally P. Wheatley; Dominique Soldati-Favre; Sanjeev Krishna; Rita Tewari; Henry M. Staines

Ca2+ contributes to a myriad of important cellular processes in all organisms, including the apicomplexans, Plasmodium and Toxoplasma. Due to its varied and essential roles, free Ca2+ is tightly regulated by complex mechanisms. These mechanisms are therefore of interest as putative drug targets. One pathway in Ca2+ homeostatic control in apicomplexans uses a Ca2+/H+ exchanger (a member of the cation exchanger family, CAX). The P. falciparum CAX (PfCAX) has recently been characterised in asexual blood stage parasites. To determine the physiological importance of apicomplexan CAXs, tagging and knock-out strategies were undertaken in the genetically tractable T. gondii and P. berghei parasites. In addition, a yeast heterologous expression system was used to study the function of apicomplexan CAXs. Tagging of T. gondii and P. berghei CAXs (TgCAX and PbCAX) under control of their endogenous promoters could not demonstrate measureable expression of either CAX in tachyzoites and asexual blood stages, respectively. These results were consistent with the ability of parasites to tolerate knock-outs of the genes for TgCAX and PbCAX at these developmental stages. In contrast, PbCAX expression was detectable during sexual stages of development in female gametocytes/gametes, zygotes and ookinetes, where it was dispersed in membranous networks within the cytosol (with minimal mitochondrial localisation). Furthermore, genetically disrupted parasites failed to develop further from “round” form zygotes, suggesting that PbCAX is essential for ookinete development and differentiation. This impeded phenotype could be rescued by removal of extracellular Ca2+. Therefore, PbCAX provides a mechanism for free living parasites to multiply within the ionic microenvironment of the mosquito midgut. Ca2+ homeostasis mediated by PbCAX is critical and suggests plasmodial CAXs may be targeted in approaches designed to block parasite transmission.


Cell Host & Microbe | 2009

Role of the Parasite and Host Cytoskeleton in Apicomplexa Parasitism

Karine Frénal; Dominique Soldati-Favre

The phylum Apicomplexa includes a large and diverse group of obligate intracellular parasites that rely on actomyosin-based motility to migrate, enter host cells, and egress from infected cells. To ensure their intracellular survival and replication, the apicomplexans have evolved sophisticated strategies for subversion of the host cytoskeleton. Given the properties in common between the host and parasite cytoskeleton, dissecting their individual contribution to the establishment of parasitic infection has been challenging. Nevertheless, recent studies have provided new insights into the mechanisms by which parasites subvert the dynamic properties of host actin and tubulin to promote their entry, development, and egress.


Nature Reviews Microbiology | 2017

Gliding motility powers invasion and egress in Apicomplexa

Karine Frénal; Jean-François Dubremetz; Maryse Lebrun; Dominique Soldati-Favre

Protozoan parasites have developed elaborate motility systems that facilitate infection and dissemination. For example, amoebae use actin-rich membrane extensions called pseudopodia, whereas Kinetoplastida are propelled by microtubule-containing flagella. By contrast, the motile and invasive stages of the Apicomplexa — a phylum that contains the important human pathogens Plasmodium falciparum (which causes malaria) and Toxoplasma gondii (which causes toxoplasmosis) — have a unique machinery called the glideosome, which is composed of an actomyosin system that underlies the plasma membrane. The glideosome promotes substrate-dependent gliding motility, which powers migration across biological barriers, as well as active host cell entry and egress from infected cells. In this Review, we discuss the discovery of the principles that govern gliding motility, the characterization of the molecular machinery involved, and its impact on parasite invasion and egress from infected cells.


International Journal for Parasitology | 2014

Emerging roles for protein S-palmitoylation in Toxoplasma biology

Karine Frénal; Louise E. Kemp; Dominique Soldati-Favre

Post-translational modifications are refined, rapidly responsive and powerful ways to modulate protein function. Among post-translational modifications, acylation is now emerging as a widespread modification exploited by eukaryotes, bacteria and viruses to control biological processes. Protein palmitoylation involves the attachment of palmitic acid, also known as hexadecanoic acid, to cysteine residues of integral and peripheral membrane proteins and increases their affinity for membranes. Importantly, similar to phosphorylation, palmitoylation is reversible and is becoming recognised as instrumental for the regulation of protein function by modulating protein interactions, stability, folding, trafficking and signalling. Palmitoylation appears to play a central role in the biology of the Apicomplexa, regulating critical processes such as host cell invasion which is vital for parasite survival and dissemination. The recent identification of over 400 palmitoylated proteins in Plasmodium falciparum erythrocytic stages illustrates the broad spread and impact of this modification on parasite biology. The main enzymes responsible for protein palmitoylation are multi-membrane protein S-acyl transferases harbouring a catalytic Asp-His-His-Cys (DHHC) motif. A global functional analysis of the repertoire of protein S-acyl transferases in Toxoplasma gondii and Plasmodium berghei has recently been performed. The essential nature of some of these enzymes illustrates the key roles played by this post-translational modification in the corresponding substrates implicated in fundamental processes such as parasite motility and organelle biogenesis. Toward a better understanding of the depalmitoylation event, a protein with palmitoyl protein thioesterase activity has been identified in T. gondii. TgPPT1/TgASH1 is the main target of specific acyl protein thioesterase inhibitors but is dispensable for parasite survival, suggesting the implication of other genes in depalmitoylation. Palmitoylation/depalmitoylation cycles are now emerging as potential novel regulatory networks and T. gondii represents a superb model organism in which to explore their significance.


Cellular Microbiology | 2014

Assessment of phosphorylation in Toxoplasma glideosome assembly and function.

Damien Jacot; Karine Frénal; Jean-Baptiste Marq; Pushkar Sharma; Dominique Soldati-Favre

Members of the phylum Apicomplexa possess a highly conserved molecular motor complex anchored in the parasite pellicle and associated with gliding motility, invasion and egress from infected cells. This machinery, called the glideosome, is structured around the acylated gliding‐associated protein GAP45 that recruits the motor complex composed of myosin A and two associated myosin light chains (TgMLC1 and TgELC1). This motor is presumably firmly anchored to the inner membrane complex underneath the plasma membrane via an interaction with two integral membrane proteins, GAP50 and GAP40. To determine if the previously mapped phosphorylation sites on TgGAP45 and TgMLC1 have a direct significance for glideosome assembly and function, a series of phospho‐mimetic and phospho‐null mutants were generated. Neither the overexpression nor the allelic replacement of TgMLC1 with phospho‐mutants impacted on glideosome assembly and parasite motility. TgGAP45 phosphorylation mutants were functionally investigated using a complementation strategy in a TgGAP45 inducible knockout background. The loss of interaction with TgGAP50 by one previously reported GAP45‐mutant appeared to depend only on the presence of a remaining competing wild type copy of TgGAP45. Accordingly, this mutant displayed no phenotype in complementation experiments. Unexpectedly, GAP45 lacking the region encompassing the cluster of twelve phosphorylation sites did not impact on its dual function in motor recruitment and pellicle integrity. Despite the extensive phosphorylation of TgMLC1 and TgGAP45, this post‐translational modification does not appear to be critical for the assembly and function of the glideosome.


PLOS Pathogens | 2016

The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host Cells.

Arnault Graindorge; Karine Frénal; Damien Jacot; Julien Salamun; Jean Baptiste Marq; Dominique Soldati-Favre

Many members of the phylum of Apicomplexa have adopted an obligate intracellular life style and critically depend on active invasion and egress from the infected cells to complete their lytic cycle. Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa, and as such, the invasive tachyzoite contains an organelle termed the conoid at its extreme apex. This motile organelle consists of a unique polymer of tubulin fibres and protrudes in both gliding and invading parasites. The class XIV myosin A, which is conserved across the Apicomplexa phylum, is known to critically contribute to motility, invasion and egress from infected cells. The MyoA-glideosome is anchored to the inner membrane complex (IMC) and is assumed to translocate the components of the circular junction secreted by the micronemes and rhoptries, to the rear of the parasite. Here we comprehensively characterise the class XIV myosin H (MyoH) and its associated light chains. We show that the 3 alpha-tubulin suppressor domains, located in MyoH tail, are necessary to anchor this motor to the conoid. Despite the presence of an intact MyoA-glideosome, conditional disruption of TgMyoH severely compromises parasite motility, invasion and egress from infected cells. We demonstrate that MyoH is necessary for the translocation of the circular junction from the tip of the parasite, where secretory organelles exocytosis occurs, to the apical position where the IMC starts. This study attributes for the first time a direct function of the conoid in motility and invasion, and establishes the indispensable role of MyoH in initiating the first step of motility along this unique organelle, which is subsequently relayed by MyoA to enact effective gliding and invasion.

Collaboration


Dive into the Karine Frénal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge