Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karine Gamache is active.

Publication


Featured researches published by Karine Gamache.


Cell | 2007

eIF2α phosphorylation bidirectionally regulates the switch from short to long-term synaptic plasticity and memory

Mauro Costa-Mattioli; Delphine Gobert; Karine Gamache; Rodney Colina; Claudio Cuello; Wayne S. Sossin; Randal J. Kaufman; Jerry Pelletier; Kobi Rosenblum; K. Krnjević; Jean-Claude Lacaille; Karim Nader; Nahum Sonenberg

The late phase of long-term potentiation (LTP) and memory (LTM) requires new gene expression, but the molecular mechanisms that underlie these processes are not fully understood. Phosphorylation of eIF2alpha inhibits general translation but selectively stimulates translation of ATF4, a repressor of CREB-mediated late-LTP (L-LTP) and LTM. We used a pharmacogenetic bidirectional approach to examine the role of eIF2alpha phosphorylation in synaptic plasticity and behavioral learning. We show that in eIF2alpha(+/S51A) mice, in which eIF2alpha phosphorylation is reduced, the threshold for eliciting L-LTP in hippocampal slices is lowered, and memory is enhanced. In contrast, only early-LTP is evoked by repeated tetanic stimulation and LTM is impaired, when eIF2alpha phosphorylation is increased by injecting into the hippocampus a small molecule, Sal003, which prevents the dephosphorylation of eIF2alpha. These findings highlight the importance of a single phosphorylation site in eIF2alpha as a key regulator of L-LTP and LTM formation.


Nature Neuroscience | 2006

NMDA receptors are critical for unleashing consolidated auditory fear memories.

Cyrinne Ben Mamou; Karine Gamache; Karim Nader

Memories are dynamic and can change when recalled. The process that returns memories to a labile state during remembering is unclear. We found that the presence of NMDA, but not AMPA, receptor antagonists in the amygdala prior to recall prevented the consolidated fear memory from returning to a labile state. These findings suggest that NMDA receptors in the amygdala are critical for transforming a memory from a fixed to a labile state.


Nature Neuroscience | 2010

PKMζ maintains memories by regulating GluR2-dependent AMPA receptor trafficking

Paola Virginia Migues; Oliver Hardt; Dong Chuan Wu; Karine Gamache; Todd Charlton Sacktor; Yu Tian Wang; Karim Nader

The maintenance of long-term memory in hippocampus, neocortex and amygdala requires the persistent action of the atypical protein kinase C isoform, protein kinase Mζ (PKMζ). We found that inactivating PKMζ in the amygdala impaired fear memory in rats and that the extent of the impairment was positively correlated with a decrease in postsynaptic GluR2. Blocking the GluR2-dependent removal of postsynaptic AMPA receptors abolished the behavioral impairment caused by PKMζ inhibition and the associated decrease in postsynaptic GluR2 expression, which correlated with performance. Similarly, blocking this pathway for removal of GluR2-containing receptors from postsynaptic sites in amygdala slices prevented the reversal of long-term potentiation caused by inactivating PKMζ. Similar behavioral results were obtained in the hippocampus for unreinforced recognition memory of object location. Together, these findings indicate that PKMζ maintains long-term memory by regulating the trafficking of GluR2-containing AMPA receptors, the postsynaptic expression of which directly predicts memory retention.


eLife | 2013

Pharmacological brake-release of mRNA translation enhances cognitive memory.

Carmela Sidrauski; Diego Acosta-Alvear; Arkady Khoutorsky; Punitha Vedantham; Brian R. Hearn; Han Hua Li; Karine Gamache; Ciara M. Gallagher; Kenny K-H Ang; Chris Wilson; Voytek Okreglak; Avi Ashkenazi; Byron Hann; Karim Nader; Michelle R. Arkin; Adam R. Renslo; Nahum Sonenberg; Peter Walter

Phosphorylation of the α-subunit of initiation factor 2 (eIF2) controls protein synthesis by a conserved mechanism. In metazoa, distinct stress conditions activate different eIF2α kinases (PERK, PKR, GCN2, and HRI) that converge on phosphorylating a unique serine in eIF2α. This collection of signaling pathways is termed the ‘integrated stress response’ (ISR). eIF2α phosphorylation diminishes protein synthesis, while allowing preferential translation of some mRNAs. Starting with a cell-based screen for inhibitors of PERK signaling, we identified a small molecule, named ISRIB, that potently (IC50 = 5 nM) reverses the effects of eIF2α phosphorylation. ISRIB reduces the viability of cells subjected to PERK-activation by chronic endoplasmic reticulum stress. eIF2α phosphorylation is implicated in memory consolidation. Remarkably, ISRIB-treated mice display significant enhancement in spatial and fear-associated learning. Thus, memory consolidation is inherently limited by the ISR, and ISRIB releases this brake. As such, ISRIB promises to contribute to our understanding and treatment of cognitive disorders. DOI: http://dx.doi.org/10.7554/eLife.00498.001


Behavioral Neuroscience | 2011

Systemic mifepristone blocks reconsolidation of cue-conditioned fear; propranolol prevents this effect.

Roger K. Pitman; Mohammed R. Milad; Sarah A. Igoe; Mark G. Vangel; Scott P. Orr; Alina Tsareva; Karine Gamache; Karim Nader

Reducing reconsolidation of reactivated traumatic memories may offer a novel pharmacological treatment for posttraumatic stress disorder (PTSD). Preclinical research is needed to identify candidate drugs. We evaluated the ability of postreactivation mifepristone (RU38486, a glucocorticoid antagonist), alone and in combination with propranolol (a beta-adrenergic blocker), both given systemically, to reduce cue-conditioned fear in rats. On Day 1, a 30-s tone conditioned stimulus (CS) was paired with an electric shock unconditioned stimulus (US). On Day 2, the CS was presented without the US (reactivation), and the freezing conditioned response (CR) was measured. This was immediately followed by subcutaneous injection of vehicle, mifepristone 30 mg/kg, propranolol 10 mg/kg, or both. On Day 3, the CR was again measured as a test of postreactivation long-term memory (PR-LTM). On Day 10, the CR was again measured to evaluate spontaneous recovery. On Day 11, the US was presented alone (reinstatement). On Day 12, the CR was again measured. A fifth group received mifepristone without the CS presentation (nonreactivation) on Day 2. A sixth group was tested four hours after the Day 2 mifepristone injection to measure postreactivation short-term memory. Postreactivation, but not nonreactivation, mifepristone produced a decrement in the CR that did not undergo spontaneous recovery and underwent only modest reinstatement. Mifepristone did not exert its effect when administered concurrently with propranolol. Postreactivation mifepristone did not impair short-term memory. Systemic mifepristone blocks the reconsolidation of cue-conditioned fear in rats. Concurrent administration of propranolol prevents this effect. Postreactivation mifepristone may be a promising treatment for PTSD, but not necessarily in combination with propranolol.


Neuron | 2013

Control of Synaptic Plasticity and Memory via Suppression of Poly(A)-Binding Protein

Arkady Khoutorsky; Akiko Yanagiya; Christos G. Gkogkas; Marc R. Fabian; Masha Prager-Khoutorsky; Ruifeng Cao; Karine Gamache; Frederic Bouthiette; Armen Parsyan; Jeffrey S. Mogil; Karim Nader; Jean Claude Lacaille; Nahum Sonenberg

Control of protein synthesis is critical for synaptic plasticity and memory formation. However, the molecular mechanisms linking neuronal activity to activation of mRNA translation are not fully understood. Here, we report that the translational repressor poly(A)-binding protein (PABP)-interacting protein 2A (PAIP2A), an inhibitor of PABP, is rapidly proteolyzed by calpains in stimulated neurons and following training for contextual memory. Paip2a knockout mice exhibit a lowered threshold for the induction of sustained long-term potentiation and an enhancement of long-term memory after weak training. Translation of CaMKIIα mRNA is enhanced in Paip2a⁻/⁻ slices upon tetanic stimulation and in the hippocampus of Paip2a⁻/⁻ mice following contextual fear learning. We demonstrate that activity-dependent degradation of PAIP2A relieves translational inhibition of memory-related genes through PABP reactivation and conclude that PAIP2A is a pivotal translational regulator of synaptic plasticity and memory.


Neuropsychopharmacology | 2012

Preclinical Evaluation of Reconsolidation Blockade by Clonidine as a Potential Novel Treatment for Posttraumatic Stress Disorder

Karine Gamache; Roger K. Pitman; Karim Nader

Exposure to traumatic events can lead to posttraumatic stress disorder (PTSD). Current PTSD treatments typically only produce partial improvement. Hence, there is a need for preclinical research to identify new candidate drugs and to develop novel therapeutic approaches. Animal studies have indicated that fear memories can be weakened by blocking restabilization after retrieval, a process known as reconsolidation. Furthermore, evidence suggests that there are important alterations of the noradrenergic system in PTSD, and hence it may be of interest to study drugs that target this pathway. Here, we investigated the efficacy of clonidine, an α2-adrenoreceptor agonist, to block reconsolidation in an animal model of persistent traumatic memories. Using an auditory fear conditioning paradigm in rats, we tested the efficacy of clonidine to weaken fear memory retention when administered systemically after retrieval. We evaluated dosage, number of treatments, and specificity in reconsolidation blockade. We found that postretrieval administration of clonidine disrupts fear-related memories in a dose-dependent manner and that two treatments are sufficient for maximal memory impairment. Furthermore, we determined that this effect is long lasting and specific to reconsolidation processes as shown by the selectivity to affect reactivated memories and the absence of spontaneous recovery and of postreactivation short-term memory impairment. Our results demonstrate the efficacy of systemic administration of clonidine following retrieval to persistently disrupt fear memory retention through reconsolidation blockade. This study provides important preclinical parameters for future therapeutic strategies involving clonidine to block reconsolidation as a novel treatment for PTSD symptoms.


The Journal of Neuroscience | 2015

Memory Retrieval Requires Ongoing Protein Synthesis and NMDA Receptor Activity-Mediated AMPA Receptor Trafficking

Joëlle Lopez; Karine Gamache; Rilla Schneider; Karim Nader

Whereas consolidation and reconsolidation are considered dynamic processes requiring protein synthesis, memory retrieval has long been considered a passive readout of previously established plasticity. However, previous findings suggest that memory retrieval may be more dynamic than previously thought. This study therefore aimed at investigating the molecular mechanisms underlying memory retrieval in the rat. Infusion of protein synthesis inhibitors (rapamycin or anisomycin) in the amygdala 10 min before memory retrieval transiently impaired auditory fear memory expression, suggesting ongoing protein synthesis is required to enable memory retrieval. We then investigated the role of protein synthesis in NMDA receptor activity-mediated AMPA receptor trafficking. Coinfusion of an NMDA receptor antagonist (ifenprodil) or infusion of an AMPA receptor endocytosis inhibitor (GluA23Y) before rapamycin prevented this memory impairment. Furthermore, rapamycin transiently decreased GluA1 levels at the postsynaptic density (PSD), but did not affect extrasynaptic sites. This effect at the PSD was prevented by an infusion of GluA23Y before rapamycin. Together, these data show that ongoing protein synthesis is required before memory retrieval is engaged, and suggest that this protein synthesis may be involved in the NMDAR activity-mediated trafficking of AMPA receptors that takes place during memory retrieval.


Nature Medicine | 2017

Metformin ameliorates core deficits in a mouse model of fragile X syndrome

Ilse Gantois; Arkady Khoutorsky; Jelena Popic; Argel Aguilar-Valles; Erika Freemantle; Ruifeng Cao; Vijendra Sharma; Tine Pooters; Anmol Nagpal; Agnieszka Skalecka; Vinh Tai Truong; Shane Wiebe; Isabelle Groves; Seyed Mehdi Jafarnejad; Clément Chapat; Elizabeth A. McCullagh; Karine Gamache; Karim Nader; Jean Claude Lacaille; Christos G. Gkogkas; Nahum Sonenberg

Fragile X syndrome (FXS) is the leading monogenic cause of autism spectrum disorders (ASD). Trinucleotide repeat expansions in FMR1 abolish FMRP expression, leading to hyperactivation of ERK and mTOR signaling upstream of mRNA translation. Here we show that metformin, the most widely used drug for type 2 diabetes, rescues core phenotypes in Fmr1−/y mice and selectively normalizes ERK signaling, eIF4E phosphorylation and the expression of MMP-9. Thus, metformin is a potential FXS therapeutic.


The FASEB Journal | 2016

The X-linked inhibitor of apoptosis regulates long-term depression and learning rate

Julien Gibon; Nicolas Unsain; Karine Gamache; Rhalena Thomas; Andrés de Léon; Aaron Johnstone; Karim Nader; Philippe Séguéla; Philip A. Barker

Hippocampal long‐term depression (LTD) is an active form of synaptic plasticity that is necessary for consolidation of spatial memory, contextual fear memory, and novelty acquisition. Recent studies have shown that caspases (CASPs) play an important role in NMDA receptor–dependent LTD and are involved in postsynaptic remodeling and synaptic maturation. In the present study, we examined the role of X‐linked inhibitor of apoptosis (XIAP), a putative endogenous CASP inhibitor, in synaptic plasticity in the hippocampus. Analysis in acute brain slices and in cultured hippocampal neurons revealed that XIAP deletion increases CASP‐3 activity, enhances a‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptor internalization, sharply increases LTD, and significantly reduces synapse density. In vivo behaviors related to memory were also altered in XIAP–/– mice, with faster acquisition of spatial object location and increased fear memory observed. Together, these results indicate that XIAP plays an important physiologic role in regulating sublethal CASP‐3 activity within central neurons and thereby facilitates synaptic plasticity and memory acquisition.—Gibon, J., Unsain, N., Gamache, K., Thomas, R. A., De Leon, A., Johnstone, A., Nader, K., Séguéla, P., Barker, P. A. The X‐linked inhibitor of apoptosis regulates long‐term depression and learning rate. FASEB J. 30, 3083–3090 (2016). www.fasebj.org

Collaboration


Dive into the Karine Gamache's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Johnstone

Montreal Neurological Institute and Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge