Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karine Labadie is active.

Publication


Featured researches published by Karine Labadie.


Science | 2014

Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome

Boulos Chalhoub; Shengyi Liu; Isobel A. P. Parkin; Haibao Tang; Xiyin Wang; Julien Chiquet; Harry Belcram; Chaobo Tong; Birgit Samans; Margot Corréa; Corinne Da Silva; Jérémy Just; Cyril Falentin; Chu Shin Koh; Isabelle Le Clainche; Maria Bernard; Pascal Bento; Benjamin Noel; Karine Labadie; Adriana Alberti; Mathieu Charles; Dominique Arnaud; Hui Guo; Christian Daviaud; Salman Alamery; Kamel Jabbari; Meixia Zhao; Patrick P. Edger; Houda Chelaifa; David Tack

The genomic origins of rape oilseed Many domesticated plants arose through the meeting of multiple genomes through hybridization and genome doubling, known as polyploidy. Chalhoub et al. sequenced the polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed (canola), kale, and rutabaga. B. napus has undergone multiple events affecting differently sized genetic regions where a gene from one progenitor species has been converted to the copy from a second progenitor species. Some of these gene conversion events appear to have been selected by humans as part of the process of domestication and crop improvement. Science, this issue p. 950 The polyploid genome of oilseed rape exhibits evolution through homologous gene conversion. Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.


Nature | 2012

The banana (Musa acuminata) genome and the evolution of monocotyledonous plants.

Angélique D’Hont; Jean-Marc Aury; Franc-Christophe Baurens; Françoise Carreel; Olivier Garsmeur; Benjamin Noel; Stéphanie Bocs; Gaëtan Droc; Mathieu Rouard; Corinne Da Silva; Kamel Jabbari; Céline Cardi; Julie Poulain; Marlène Souquet; Karine Labadie; Cyril Jourda; Juliette Lengellé; Marguerite Rodier-Goud; Adriana Alberti; Maria Bernard; Margot Corréa; Saravanaraj Ayyampalayam; Michael R. McKain; Jim Leebens-Mack; Diane Burgess; Michael Freeling; Didier Mbéguié-A-Mbéguié; Matthieu Chabannes; Thomas Wicker; Olivier Panaud

Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon–eudicotyledon divergence.


Science | 2015

Structure and function of the global ocean microbiome

Shinichi Sunagawa; Luis Pedro Coelho; Samuel Chaffron; Jens Roat Kultima; Karine Labadie; Guillem Salazar; Bardya Djahanschiri; Georg Zeller; Daniel R. Mende; Adriana Alberti; Francisco M. Cornejo-Castillo; Paul Igor Costea; Corinne Cruaud; Francesco d'Ovidio; Stefan Engelen; Isabel Ferrera; Josep M. Gasol; Lionel Guidi; Falk Hildebrand; Florian Kokoszka; Cyrille Lepoivre; Gipsi Lima-Mendez; Julie Poulain; Bonnie T. Poulos; Marta Royo-Llonch; Hugo Sarmento; Sara Vieira-Silva; Céline Dimier; Marc Picheral; Sarah Searson

Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems.


Nature Communications | 2014

The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates

Camille Berthelot; Frédéric Brunet; Domitille Chalopin; Amélie Juanchich; Maria Bernard; Benjamin Noel; Pascal Bento; Corinne Da Silva; Karine Labadie; Adriana Alberti; Jean-Marc Aury; Alexandra Louis; Patrice Dehais; Philippe Bardou; Jérôme Montfort; Christophe Klopp; Cédric Cabau; Christine Gaspin; Gary H. Thorgaard; Mekki Boussaha; Edwige Quillet; René Guyomard; Delphine Galiana; Julien Bobe; Jean-Nicolas Volff; Carine Genet; Patrick Wincker; Olivier Jaillon; Hugues Roest Crollius

Vertebrate evolution has been shaped by several rounds of whole-genome duplications (WGDs) that are often suggested to be associated with adaptive radiations and evolutionary innovations. Due to an additional round of WGD, the rainbow trout genome offers a unique opportunity to investigate the early evolutionary fate of a duplicated vertebrate genome. Here we show that after 100 million years of evolution the two ancestral subgenomes have remained extremely collinear, despite the loss of half of the duplicated protein-coding genes, mostly through pseudogenization. In striking contrast is the fate of miRNA genes that have almost all been retained as duplicated copies. The slow and stepwise rediploidization process characterized here challenges the current hypothesis that WGD is followed by massive and rapid genomic reorganizations and gene deletions.


Scientific Reports | 2017

Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges

Anaïs Gouin; Anthony Bretaudeau; Kiwoong Nam; Sylvie Gimenez; Jean-Marc Aury; Bernard Duvic; Frédérique Hilliou; Nicolas Durand; Nicolas Montagné; Isabelle Darboux; Suyog S. Kuwar; Thomas Chertemps; David Siaussat; Anne Bretschneider; Yves Moné; Seung-Joon Ahn; Sabine Hänniger; Anne-Sophie Gosselin Grenet; David Neunemann; Florian Maumus; Isabelle Luyten; Karine Labadie; Wei Xu; Fotini Koutroumpa; Jean-Michel Escoubas; Angel Llopis; Martine Maïbèche-Coisne; Fanny Salasc; Archana Tomar; Alisha Anderson

Emergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world’s worst agricultural pests. This insect is polyphagous while the majority of other lepidopteran herbivores are specialist. It consists of two morphologically indistinguishable strains (“C” and “R”) that have different host plant ranges. To describe the evolutionary mechanisms that both enable the emergence of polyphagous herbivory and lead to the shift in the host preference, we analyzed whole genome sequences from laboratory and natural populations of both strains. We observed huge expansions of genes associated with chemosensation and detoxification compared with specialist Lepidoptera. These expansions are largely due to tandem duplication, a possible adaptation mechanism enabling polyphagy. Individuals from natural C and R populations show significant genomic differentiation. We found signatures of positive selection in genes involved in chemoreception, detoxification and digestion, and copy number variation in the two latter gene families, suggesting an adaptive role for structural variation.


Science | 2014

Mapping the Epigenetic Basis of Complex Traits

Sandra Cortijo; René Wardenaar; Maria Colomé-Tatché; Arthur Gilly; Mathilde Etcheverry; Karine Labadie; Erwann Caillieux; Jean-Marc Aury; Patrick Wincker; François Roudier; Ritsert C. Jansen; Vincent Colot; Frank Johannes

Quantifying the impact of heritable epigenetic variation on complex traits is an emerging challenge in population genetics. Here, we analyze a population of isogenic Arabidopsis lines that segregate experimentally induced DNA methylation changes at hundreds of regions across the genome. We demonstrate that several of these differentially methylated regions (DMRs) act as bona fide epigenetic quantitative trait loci (QTLepi), accounting for 60 to 90% of the heritability for two complex traits, flowering time and primary root length. These QTLepi are reproducible and can be subjected to artificial selection. Many of the experimentally induced DMRs are also variable in natural populations of this species and may thus provide an epigenetic basis for Darwinian evolution independently of DNA sequence changes. Genetic mapping reveals epigenetic changes associated with flowering time and root length. [Also see Perspective by Schmitz] Plant Epigenetics Quantitative trait loci (QTLs) are genetic regions associated with phenotypic traits that help to determine the underlying genetics controlling the magnitude of a specific trait. Cortijo et al. (p. 1145, published online 6 February; see the Perspective by Schmitz) identified epigenetic QTLs associated with differences in methylation marks (epiQTLs) controlling flowering time and root length in the model plant Arabidopsis. These epiQTLs were mapped in genetically identical lines that differ only in their methylation marks. A small number of QTLs were able to explain up to 90% of the heritable variation in these traits. Thus, in plants, the heritability of some complex traits can be determined by epigenetic variation.


Science | 2014

The coffee genome provides insight into the convergent evolution of caffeine biosynthesis

Lorenzo Carretero-Paulet; Alexis Dereeper; Gaëtan Droc; Romain Guyot; Marco Pietrella; Chunfang Zheng; Adriana Alberti; François Anthony; Giuseppe Aprea; Jean-Marc Aury; Pascal Bento; Maria Bernard; Stéphanie Bocs; Claudine Campa; Alberto Cenci; Marie Christine Combes; Dominique Crouzillat; Corinne Da Silva; Loretta Daddiego; Fabien De Bellis; Stéphane Dussert; Olivier Garsmeur; Thomas Gayraud; Valentin Guignon; Katharina Jahn; Véronique Jamilloux; Thierry Joët; Karine Labadie; Tianying Lan; Julie Leclercq

Coffee, tea, and chocolate converge Caffeine has evolved multiple times among plant species, but no one knows whether these events involved similar genes. Denoeud et al. sequenced the Coffea canephora (coffee) genome and identified a conserved gene order (see the Perspective by Zamir). Although this species underwent fewer genome duplications than related species, the relevant caffeine genes experienced tandem duplications that expanded their numbers within this species. Scientists have seen similar but independent expansions in distantly related species of tea and cacao, suggesting that caffeine might have played an adaptive role in coffee evolution. Science, this issue p. 1181; see also p. 1124 The genetic origins of coffee’s constituents reveal intriguing links to cacao and tea. Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology

Matthieu Legendre; Julia Bartoli; Lyubov Shmakova; Sandra Jeudy; Karine Labadie; Annie Adrait; Magali Lescot; Olivier Poirot; Lionel Bertaux; Christophe Bruley; Yohann Couté; Elizaveta Rivkina; Chantal Abergel; Jean-Michel Claverie

Significance Giant DNA viruses are visible under a light microscope and their genomes encode more proteins than some bacteria or intracellular parasitic eukaryotes. There are two very distinct types and infect unicellular protists such as Acanthamoeba. On one hand, Megaviridae possess large pseudoicosahedral capsids enclosing a megabase-sized adenine–thymine-rich genome, and on the other, the recently discovered Pandoraviruses exhibit micron-sized amphora-shaped particles and guanine–cytosine-rich genomes of up to 2.8 Mb. While initiating a survey of the Siberian permafrost, we isolated a third type of giant virus combining the Pandoravirus morphology with a gene content more similar to that of icosahedral DNA viruses. This suggests that pandoravirus-like particles may correspond to an unexplored diversity of unconventional DNA virus families. The largest known DNA viruses infect Acanthamoeba and belong to two markedly different families. The Megaviridae exhibit pseudo-icosahedral virions up to 0.7 μm in diameter and adenine–thymine (AT)-rich genomes of up to 1.25 Mb encoding a thousand proteins. Like their Mimivirus prototype discovered 10 y ago, they entirely replicate within cytoplasmic virion factories. In contrast, the recently discovered Pandoraviruses exhibit larger amphora-shaped virions 1 μm in length and guanine–cytosine-rich genomes up to 2.8 Mb long encoding up to 2,500 proteins. Their replication involves the host nucleus. Whereas the Megaviridae share some general features with the previously described icosahedral large DNA viruses, the Pandoraviruses appear unrelated to them. Here we report the discovery of a third type of giant virus combining an even larger pandoravirus-like particle 1.5 μm in length with a surprisingly smaller 600 kb AT-rich genome, a gene content more similar to Iridoviruses and Marseillevirus, and a fully cytoplasmic replication reminiscent of the Megaviridae. This suggests that pandoravirus-like particles may be associated with a variety of virus families more diverse than previously envisioned. This giant virus, named Pithovirus sibericum, was isolated from a >30,000-y-old radiocarbon-dated sample when we initiated a survey of the virome of Siberian permafrost. The revival of such an ancestral amoeba-infecting virus used as a safe indicator of the possible presence of pathogenic DNA viruses, suggests that the thawing of permafrost either from global warming or industrial exploitation of circumpolar regions might not be exempt from future threats to human or animal health.


Nature | 2013

Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga

Jean-François Flot; Boris Hespeels; Xiang Li; Benjamin Noel; Irina R. Arkhipova; Etienne Danchin; Andreas Hejnol; Bernard Henrissat; Romain Koszul; Jean-Marc Aury; Valérie Barbe; Roxane Marie Barthélémy; Jens Bast; Georgii A. Bazykin; Olivier Chabrol; Arnaud Couloux; Martine Da Rocha; Corinne Da Silva; Eugene Gladyshev; Philippe Gouret; Oskar Hallatschek; Bette Hecox-Lea; Karine Labadie; Benjamin Lejeune; Oliver Piskurek; Julie Poulain; Fernando Rodriguez; Joseph F. Ryan; O. Vakhrusheva; Eric Wajnberg

Loss of sexual reproduction is considered an evolutionary dead end for metazoans, but bdelloid rotifers challenge this view as they appear to have persisted asexually for millions of years. Neither male sex organs nor meiosis have ever been observed in these microscopic animals: oocytes are formed through mitotic divisions, with no reduction of chromosome number and no indication of chromosome pairing. However, current evidence does not exclude that they may engage in sex on rare, cryptic occasions. Here we report the genome of a bdelloid rotifer, Adineta vaga (Davis, 1873), and show that its structure is incompatible with conventional meiosis. At gene scale, the genome of A. vaga is tetraploid and comprises both anciently duplicated segments and less divergent allelic regions. However, in contrast to sexual species, the allelic regions are rearranged and sometimes even found on the same chromosome. Such structure does not allow meiotic pairing; instead, we find abundant evidence of gene conversion, which may limit the accumulation of deleterious mutations in the absence of meiosis. Gene families involved in resistance to oxidation, carbohydrate metabolism and defence against transposons are significantly expanded, which may explain why transposable elements cover only 3% of the assembled sequence. Furthermore, 8% of the genes are likely to be of non-metazoan origin and were probably acquired horizontally. This apparent convergence between bdelloids and prokaryotes sheds new light on the evolutionary significance of sex.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida

Jonas Collén; Betina M. Porcel; Wilfrid Carré; Steven G. Ball; Cristian Chaparro; Thierry Tonon; Tristan Barbeyron; Gurvan Michel; Benjamin Noel; Klaus Valentin; Marek Eliáš; François Artiguenave; Alok Arun; Jean-Marc Aury; Jose Fernandes Barbosa-Neto; John H. Bothwell; François-Yves Bouget; Loraine Brillet; Francisco Cabello-Hurtado; Salvador Capella-Gutiérrez; Bénédicte Charrier; Lionel Cladière; J. Mark Cock; Susana M. Coelho; Christophe Colleoni; Mirjam Czjzek; Corinne Da Silva; Ludovic Delage; Philippe Deschamps; Simon M. Dittami

Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e.g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements.

Collaboration


Dive into the Karine Labadie's collaboration.

Top Co-Authors

Avatar

Patrick Wincker

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Benjamin Noel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Arnaud Couloux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Françoise Carreel

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Etienne Danchin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

François Artiguenave

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christophe Plomion

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Céline Cardi

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Grégoire Le Provost

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Joelle Amselem

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge