Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl A. Rodriguez is active.

Publication


Featured researches published by Karl A. Rodriguez.


Nature | 2006

Increased cell-to-cell variation in gene expression in ageing mouse heart.

Rumana Bahar; Claudia Hartmann; Karl A. Rodriguez; Ashley Denny; Rita A. Busuttil; Martijn E.T. Dollé; R. Brent Calder; Gary B Chisholm; Brad H. Pollock; Christoph A. Klein; Jan Vijg

The accumulation of somatic DNA damage has been implicated as a cause of ageing in metazoa. One possible mechanism by which increased DNA damage could lead to cellular degeneration and death is by stochastic deregulation of gene expression. Here we directly test for increased transcriptional noise in aged tissue by dissociating single cardiomyocytes from fresh heart samples of both young and old mice, followed by global mRNA amplification and quantification of mRNA levels in a panel of housekeeping and heart-specific genes. Although gene expression levels already varied among cardiomyocytes from young heart, this heterogeneity was significantly elevated at old age. We had demonstrated previously an increased load of genome rearrangements and other mutations in the heart of aged mice. To confirm that increased stochasticity of gene expression could be a result of increased genome damage, we treated mouse embryonic fibroblasts in culture with hydrogen peroxide. Such treatment resulted in a significant increase in cell-to-cell variation in gene expression, which was found to parallel the induction and persistence of genome rearrangement mutations at a lacZ reporter locus. These results underscore the stochastic nature of the ageing process, and could provide a mechanism for age-related cellular degeneration and death in tissues of multicellular organisms.


PLOS ONE | 2012

Altered Composition of Liver Proteasome Assemblies Contributes to Enhanced Proteasome Activity in the Exceptionally Long-Lived Naked Mole-Rat

Karl A. Rodriguez; Yael H. Edrey; Pawel A. Osmulski; Maria Gaczynska; Rochelle Buffenstein

The longest-lived rodent, the naked mole-rat (Bathyergidae; Heterocephalus glaber), maintains robust health for at least 75% of its 32 year lifespan, suggesting that the decline in genomic integrity or protein homeostasis routinely observed during aging, is either attenuated or delayed in this extraordinarily long-lived species. The ubiquitin proteasome system (UPS) plays an integral role in protein homeostasis by degrading oxidatively-damaged and misfolded proteins. In this study, we examined proteasome activity in naked mole-rats and mice in whole liver lysates as well as three subcellular fractions to probe the mechanisms behind the apparently enhanced effectiveness of UPS. We found that when compared with mouse samples, naked mole-rats had significantly higher chymotrypsin-like (ChT-L) activity and a two-fold increase in trypsin-like (T-L) in both whole lysates as well as cytosolic fractions. Native gel electrophoresis of the whole tissue lysates showed that the 20S proteasome was more active in the longer-lived species and that 26S proteasome was both more active and more populous. Western blot analyses revealed that both 19S subunits and immunoproteasome catalytic subunits are present in greater amounts in the naked mole-rat suggesting that the observed higher specific activity may be due to the greater proportion of immunoproteasomes in livers of healthy young adults. It thus appears that proteasomes in this species are primed for the efficient removal of stress-damaged proteins. Further characterization of the naked mole-rat proteasome and its regulation could lead to important insights on how the cells in these animals handle increased stress and protein damage to maintain a longer health in their tissues and ultimately a longer life.


Frontiers in Molecular Neuroscience | 2014

Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice

Karl A. Rodriguez; Sherry G. Dodds; Randy Strong; Veronica Galvan; Zelton Dave Sharp; Rochelle Buffenstein

Rapamycin, an allosteric inhibitor of the mTOR kinase, increases longevity in mice in a sex-specific manner. In contrast to the widely accepted theory that a loss of proteasome activity is detrimental to both life- and healthspan, biochemical studies in vitro reveal that rapamycin inhibits 20S proteasome peptidase activity. We tested if this unexpected finding is also evident after chronic rapamycin treatment in vivo by measuring peptidase activities for both the 26S and 20S proteasome in liver, fat, and brain tissues of old, male and female mice fed encapsulated chow containing 2.24 mg/kg (14 ppm) rapamycin for 6 months. Further we assessed if rapamycin altered expression of the chaperone proteins known to interact with the proteasome-mediated degradation system (PMDS), heat shock factor 1 (HSF1), and the levels of key mTOR pathway proteins. Rapamycin had little effect on liver proteasome activity in either gender, but increased proteasome activity in female brain lysates and lowered its activity in female fat tissue. Rapamycin-induced changes in molecular chaperone levels were also more substantial in tissues from female animals. Furthermore, mTOR pathway proteins showed more significant changes in female tissues compared to those from males. These data show collectively that there are divergent tissue and sex effects of rapamycin on the proteasome-chaperone network and that these may be linked to the disparate effects of rapamycin on males and females. Further our findings suggest that rapamycin induces indirect regulation of the PMDS/heat-shock response through its modulation of the mTOR pathway rather than via direct interactions between rapamycin and the proteasome.


PLOS ONE | 2013

Elevated Protein Carbonylation, and Misfolding in Sciatic Nerve from db/db and Sod1−/− Mice: Plausible Link between Oxidative Stress and Demyelination

Ryan T. Hamilton; Arunabh Bhattacharya; Michael E. Walsh; Yun Shi; Rochelle Wei; Yiqiang Zhang; Karl A. Rodriguez; Rochelle Buffenstein; Asish R. Chaudhuri; Holly Van Remmen

Diabetic peripheral polyneuropathy is associated with decrements in motor/sensory neuron myelination, nerve conduction and muscle function; however, the mechanisms of reduced myelination in diabetes are poorly understood. Chronic elevation of oxidative stress may be one of the potential determinants for demyelination as lipids and proteins are important structural constituents of myelin and highly susceptible to oxidation. The goal of the current study was to determine whether there is a link between protein oxidation/misfolding and demyelination. We chose two distinct models to test our hypothesis: 1) the leptin receptor deficient mouse (dbdb) model of diabetic polyneuropathy and 2) superoxide dismutase 1 knockout (Sod1−/−) mouse model of in vivo oxidative stress. Both experimental models displayed a significant decrement in nerve conduction, increase in tail distal motor latency as well as reduced myelin thickness and fiber/axon diameter. Further biochemical studies demonstrated that oxidative stress is likely to be a potential key player in the demyelination process as both models exhibited significant elevation in protein carbonylation and alterations in protein conformation. Since peripheral myelin protein 22 (PMP22) is a key component of myelin sheath and has been found mutated and aggregated in several peripheral neuropathies, we predicted that an increase in carbonylation and aggregation of PMP22 may be associated with demyelination in dbdb mice. Indeed, PMP22 was found to be carbonylated and aggregated in sciatic nerves of dbdb mice. Sequence-driven hydropathy plot analysis and in vitro oxidation-induced aggregation of purified PMP22 protein supported the premise for oxidation-dependent aggregation of PMP22 in dbdb mice. Collectively, these data strongly suggest for the first time that oxidation-mediated protein misfolding and aggregation of key myelin proteins may be linked to demyelination and reduced nerve conduction in peripheral neuropathies.


Current Pharmaceutical Design | 2011

Walking the oxidative stress tightrope: A perspective from the naked mole-rat, the longest-living rodent

Karl A. Rodriguez; Ewa Wywial; Viviana I. Pérez; Adriant J. Lambert; Yael H. Edrey; Kaitlyn N. Lewis; Kelly M. Grimes; Merry L. Lindsey; Martin D. Brand; Rochelle Buffenstein

Reactive oxygen species (ROS), by-products of aerobic metabolism, cause oxidative damage to cells and tissue and not surprisingly many theories have arisen to link ROS-induced oxidative stress to aging and health. While studies clearly link ROS to a plethora of divergent diseases, their role in aging is still debatable. Genetic knock-down manipulations of antioxidants alter the levels of accrued oxidative damage, however, the resultant effect of increased oxidative stress on lifespan are equivocal. Similarly the impact of elevating antioxidant levels through transgenic manipulations yield inconsistent effects on longevity. Furthermore, comparative data from a wide range of endotherms with disparate longevity remain inconclusive. Many long-living species such as birds, bats and mole-rats exhibit high-levels of oxidative damage, evident already at young ages. Clearly, neither the amount of ROS per se nor the sensitivity in neutralizing ROS are as important as whether or not the accrued oxidative stress leads to oxidative-damage-linked age-associated diseases. In this review we examine the literature on ROS, its relation to disease and the lessons gleaned from a comparative approach based upon species with widely divergent responses. We specifically focus on the longest lived rodent, the naked mole-rat, which maintains good health and provides novel insights into the paradox of maintaining both an extended healthspan and lifespan despite high oxidative stress from a young age.


Mechanisms of Ageing and Development | 2010

Molecular mechanisms of proteasome plasticity in aging.

Karl A. Rodriguez; Maria Gaczynska; Pawel A. Osmulski

The ubiquitin-proteasome pathway plays a crucial role in regulation of intracellular protein turnover. Proteasome, the central protease of the pathway, encompasses multi-subunit assemblies sharing a common catalytic core supplemented by regulatory modules and localizing to different subcellular compartments. To better comprehend age-related functions of the proteasome we surveyed content, composition and catalytic properties of the enzyme in cytosolic, microsomal and nuclear fractions obtained from mouse livers subjected to organismal aging. We found that during aging subunit composition and subcellular distribution of proteasomes changed without substantial alterations in the total level of core complexes. We observed that the general decline in proteasomes functions was limited to nuclear and cytosolic compartments. Surprisingly, the observed changes in activity and specificity were linked to the amount of the activator module and distinct composition of the catalytic subunits. In contrast, activity, specificity and composition of the microsomal-associated proteasomes remained mostly unaffected by aging; however their relative contribution to the total activity was substantially elevated. Unexpectedly, the nuclear proteasomes were affected most profoundly by aging possibly triggering significant changes in cellular signaling and transcription. Collectively, the data indicate an age-related refocusing of proteasome from the compartment-specific functions towards general protein maintenance.


Biochimica et Biophysica Acta | 2014

A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition.

Karl A. Rodriguez; Pawel A. Osmulski; Anson Pierce; Susan T. Weintraub; Maria Gaczynska; Rochelle Buffenstein

The naked mole-rat maintains robust proteostasis and high levels of proteasome-mediated proteolysis for most of its exceptional (~31years) life span. Here, we report that the highly active proteasome from the naked mole-rat liver resists attenuation by a diverse suite of proteasome-specific small molecule inhibitors. Moreover, mouse, human, and yeast proteasomes exposed to the proteasome-depleted, naked mole-rat cytosolic fractions, recapitulate the observed inhibition resistance, and mammalian proteasomes also show increased activity. Gel filtration coupled with mass spectrometry and atomic force microscopy indicates that these traits are supported by a protein factor that resides in the cytosol. This factor interacts with the proteasome and modulates its activity. Although Heat shock protein 72 kDa (HSP72) and Heat shock protein 40 kDa (Homolog of bacterial DNAJ1) (HSP40(Hdj1)) are among the constituents of this factor, the observed phenomenon, such as increasing peptidase activity and protecting against inhibition cannot be reconciled with any known chaperone functions. This novel function may contribute to the exceptional protein homeostasis in the naked mole-rat and allow it to successfully defy aging.


Journal of Biological Chemistry | 1996

Identification of Functional Domains within the RAD1·RAD10 Repair and Recombination Endonuclease of Saccharomyces cerevisiae

Karl A. Rodriguez; Zhigang Wang; Errol C. Friedberg; Alan E. Tomkinson

Saccharomyces cerevisiae rad1 and rad10 mutants are unable to carry out nucleotide excision repair and are also defective in a mitotic intrachromosomal recombination pathway. The products of these genes are subunits of an endonuclease which recognizes DNA duplex/single-strand junctions and specifically cleaves the 3′ single-strand extension at or near the junction. It has been suggested that such junctions arise as a consequence of DNA lesion processing during nucleotide excision repair and the processing of double-strand breaks during intrachromosomal recombination. In this study we show that the RAD1·RAD10 complex also cleaves a more complex junction structure consisting of a duplex with a protruding 3′ single-strand branch that resembles putative recombination intermediates in the RAD1·RAD10-mediated single-strand annealing pathway of mitotic recombination. Using monoclonal antibodies, we have identified two regions of RAD1 that are required for the cleavage of duplex/single-strand junctions. These reagents also inhibit nucleotide excision repair in vitro, confirming the essential role of the RAD1·RAD10 endonuclease in this pathway.


Biochimica et Biophysica Acta | 2015

Age-related Changes in the Proteostasis Network in the Brain of the Naked Mole-Rat: Implications Promoting Healthy Longevity

Judy C. Triplett; Antonella Tramutola; Aaron M. Swomley; Jessime Kirk; Kelly M. Grimes; Kaitilyn N. Lewis; Miranda E. Orr; Karl A. Rodriguez; Jian Cai; Jon B. Klein; Marzia Perluigi; Rochelle Buffenstein; D. Allan Butterfield

The naked mole-rat (NMR) is the longest-lived rodent and possesses several exceptional traits: marked cancer resistance, negligible senescence, prolonged genomic integrity, pronounced proteostasis, and a sustained health span. The underlying molecular mechanisms that contribute to these extraordinary attributes are currently under investigation to gain insights that may conceivably promote and extend human health span and lifespan. The ubiquitin-proteasome and autophagy-lysosomal systems play a vital role in eliminating cellular detritus to maintain proteostasis and have been previously shown to be more robust in NMRs when compared with shorter-lived rodents. Using a 2-D PAGE proteomics approach, differential expression and phosphorylation levels of proteins involved in proteostasis networks were evaluated in the brains of NMRs in an age-dependent manner. We identified 9 proteins with significantly altered levels and/or phosphorylation states that have key roles involved in proteostasis networks. To further investigate the possible role that autophagy may play in maintaining cellular proteostasis, we examined aspects of the PI3K/Akt/mammalian target of rapamycin (mTOR) axis as well as levels of Beclin-1, LC3-I, and LC3-II in the brain of the NMR as a function of age. Together, these results show that NMRs maintain high levels of autophagy throughout the majority of their lifespan and may contribute to the extraordinary health span of these rodents. The potential of augmenting human health span via activating the proteostasis network will require further studies.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax

Kexin Li; Wei Hong; Hengwu Jiao; Guo Dong Wang; Karl A. Rodriguez; Rochelle Buffenstein; Yang Zhao; Eviatar Nevo; Huabin Zhao

Significance Sympatric speciation is still highly controversial. Here we demonstrate, based on genome-wide divergence analysis, that sympatric speciation in the blind subterranean rodent Spalax galili encompasses multiple and widespread genomic adaptive complexes associated with the sharply divergent and abutting basalt and chalk soil populations. Gene ontology enrichment analysis highlights sensory perception, musculature, metabolism, and energetics in basalt against neurogenetics and nutrition in chalk. Population divergence of chemoreceptor genes suggests the operation of mate and habitat choices, substantiating sympatric speciation. Natural selection and natural genetic engineering overrule gene flow, evolving divergent ecological adaptive complexes. Sympatric speciation may be a common speciation mode, as envisaged by Darwin, due to the abundance of sharp divergent geological, edaphic, climatic, and biotic ecologies in nature. Sympatric speciation (SS), i.e., speciation within a freely breeding population or in contiguous populations, was first proposed by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection] and is still controversial despite theoretical support [Gavrilets S (2004) Fitness Landscapes and the Origin of Species (MPB-41)] and mounting empirical evidence. Speciation of subterranean mammals generally, including the genus Spalax, was considered hitherto allopatric, whereby new species arise primarily through geographic isolation. Here we show in Spalax a case of genome-wide divergence analysis in mammals, demonstrating that SS in continuous populations, with gene flow, encompasses multiple widespread genomic adaptive complexes, associated with the sharply divergent ecologies. The two abutting soil populations of S. galili in northern Israel habituate the ancestral Senonian chalk population and abutting derivative Plio-Pleistocene basalt population. Population divergence originated ∼0.2–0.4 Mya based on both nuclear and mitochondrial genome analyses. Population structure analysis displayed two distinctly divergent clusters of chalk and basalt populations. Natural selection has acted on 300+ genes across the genome, diverging Spalax chalk and basalt soil populations. Gene ontology enrichment analysis highlights strong but differential soil population adaptive complexes: in basalt, sensory perception, musculature, metabolism, and energetics, and in chalk, nutrition and neurogenetics are outstanding. Population differentiation of chemoreceptor genes suggests intersoil populations mate and habitat choice substantiating SS. Importantly, distinctions in protein degradation may also contribute to SS. Natural selection and natural genetic engineering [Shapiro JA (2011) Evolution: A View From the 21st Century] overrule gene flow, evolving divergent ecological adaptive complexes. Sharp ecological divergences abound in nature; therefore, SS appears to be an important mode of speciation as first envisaged by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection].

Collaboration


Dive into the Karl A. Rodriguez's collaboration.

Top Co-Authors

Avatar

Rochelle Buffenstein

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Maria Gaczynska

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Pawel A. Osmulski

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Miranda E. Orr

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Cai

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Jon B. Klein

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge