Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl Andersson is active.

Publication


Featured researches published by Karl Andersson.


Gene Therapy | 2005

Tumor cell targeted gene delivery by adenovirus 5 vectors carrying knobless fibers with antibody-binding domains.

Petra Henning; Karl Andersson; Karolin Frykholm; A Ali; Maria K. Magnusson; Per-Åke Nygren; O. Granio; Saw See Hong; Pierre Boulanger; Leif Lindholm

Most human carcinoma cell lines lack the high-affinity receptors for adenovirus serotype 5 (Ad5) at their surface and are nonpermissive to Ad5. We therefore tested the efficiency of retargeting Ad5 to alternative cellular receptors via immunoglobulin (Ig)-binding domains inserted at the extremity of short-shafted, knobless fibers. The two recombinant Ad5s constructed, Ad5/R7-Zwt-Zwt and Ad5/R7-C2-C2, carried tandem Ig-binding domains from Staphylococcal protein A (abbreviated Zwt) and from Streptococcal protein G (C2), respectively. Both viruses bound their specific Ig isotypes with the expected affinity. They transduced human carcinoma cells independently of the CAR pathway, via cell surface receptors targeted by specific monoclonal antibodies, that is, EGF-R on A549, HT29 and SW1116, HER-2/neu on SK-OV-3 and SK-BR-3, CA242 (epitope recognized by the monoclonal antibody C242) antigen on HT29 and SW1116, and PSMA (prostate-specific membrane antigen) expressed on HEK-293 cells, respectively. However, Colo201 and Colo205 cells were neither transduced by targeting CA242 or EGF-R nor were LNCaP cells transduced by targeting PSMA. Our results suggested that one given surface receptor could mediate transduction of certain cells but not others, indicating that factors and steps other than cell surface expression and virus–receptor interaction are additional determinants of Ad5-mediated transduction of tumor cells. Using penton base RGD mutants, we found that one of these limiting steps was virus endocytosis.


Journal of Molecular Recognition | 1999

Exploring buffer space for molecular interactions.

Karl Andersson; Daphne Areskoug; Emilia Hardenborg

The interaction of two molecules binding to each other is described by two rate parameters, the association rate parameter ka and the dissociation rate parameter kd. Under standardized conditions these kinetic parameters can be determined by analysis of their interaction in an affinity‐based biosensor system, such as BIACORE® 3000. The association rate describes the collision frequency and the attraction between two molecules and the dissociation rate describes the stability of the molecular complex. By comparing the affinity of different molecules (calculated as the quotient of the association rate parameter and the dissociation rate parameter), an estimation of specificity can be obtained. For dissociation, two different aspects can be considered—the practical aspect, where one is interested in separating the two molecules, and the informative aspect, where one is interested in the reasons for the dissociation event. This review focuses on a method that was designed to solve the practical problem of regeneration, but eventually produced a considerable amount of information about the interactions themselves. Copyright


PLOS ONE | 2011

Gefitinib Induces Epidermal Growth Factor Receptor Dimers Which Alters the Interaction Characteristics with 125I-EGF

Hanna Björkelund; Lars Gedda; Pavel Barta; Magnus Malmqvist; Karl Andersson

The tyrosine kinase inhibitor gefitinib inhibits growth in some tumor types by targeting the epidermal growth factor receptor (EGFR). Previous studies show that the affinity of the EGF-EGFR interaction varies between hosting cell line, and that gefitinib increases the affinity for some cell lines. In this paper, we investigate possible mechanisms behind these observations. Real-time interaction analysis in LigandTracer® Grey revealed that the HER2 dimerization preventing antibody pertuzumab clearly modified the binding of 125I-EGF to EGFR on HER2 overexpressing SKOV3 cells in the presence of gefitinib. Pertuzumab did not affect the binding on A431 cells, which express low levels of HER2. Cross-linking measurements showed that gefitinib increased the amount of EGFR dimers 3.0–3.8 times in A431 cells in the absence of EGF. In EGF stimulated SKOV3 cells the amount of EGFR dimers increased 1.8–2.2 times by gefitinib, but this effect was cancelled by pertuzumab. Gefitinib treatment did not alter the number of EGFR or HER2 expressed in tumor cell lines A431, U343, SKOV3 and SKBR3. Real-time binding traces were further analyzed in a novel tool, Interaction Map, which deciphered the different components of the measured interaction and supports EGF binding to multiple binding sites. EGFR and HER2 expression affect the levels of EGFR monomers, homodimers and heterodimers and EGF binds to the various monomeric/dimeric forms of EGFR with unique binding properties. Taken together, we conclude that dimerization explains the varying affinity of EGF – EGFR in different cells, and we propose that gefitinib induces EGFR dimmers, which alters the interaction characteristics with 125I-EGF.


Cancer Gene Therapy | 2007

Adenovirus 5 vector genetically re-targeted by an Affibody molecule with specificity for tumor antigen HER2/neu

Maria K. Magnusson; Petra Henning; Susanna Myhre; Maria Wikman; Taco G. Uil; Mikaela Friedman; Karl Andersson; Saw-See Hong; Rob C. Hoeben; Nagy Habib; Stefan Ståhl; Pierre Boulanger; Leif Lindholm

In order to use adenovirus (Ad) type 5 (Ad5) for cancer gene therapy, Ad needs to be de-targeted from its native receptors and re-targeted to a tumor antigen. A limiting factor for this has been to find a ligand that (i) binds a relevant target, (ii) is able to fold correctly in the reducing environment of the cytoplasm and (iii) when incorporated at an optimal position on the virion results in a virus with a low physical particle to plaque-forming units ratio to diminish the viral load to be administered to a future patient. Here, we present a solution to these problems by producing a genetically re-targeted Ad with a tandem repeat of the HER2/neu reactive Affibody molecule (ZH) in the HI-loop of a Coxsackie B virus and Ad receptor (CAR) binding ablated fiber genetically modified to contain sequences for flexible linkers between the ZH and the knob sequences. ZH is an Affibody molecule specific for the extracellular domain of human epidermal growth factor receptor 2 (HER2/neu) that is overexpressed in inter alia breast and ovarian carcinomas. The virus presented here exhibits near wild-type growth characteristics, infects cells via HER2/neu instead of CAR and represents an important step toward the development of genetically re-targeted adenoviruses with clinical relevance.


Journal of Molecular Recognition | 2001

Predicting the kinetics of peptide–antibody interactions using a multivariate experimental design of sequence and chemical space

Karl Andersson; Laurence Choulier; Markku Hämäläinen; Marc H.V. Van Regenmortel; Danièle Altschuh; Magnus Malmqvist

A multivariate approach involving modifications in peptide sequence and chemical buffer medium was used as an attempt to predict the kinetics of peptide‐antibody interactions. Using a BIACORE® system the kinetic parameters of the interaction of Fab 57P with 18 peptide analogues of an epitope of tobacco mosaic virus protein were characterized in 20 buffers of various pH values and containing different chemical additives (NaCl, urea, EDTA, KSCN and DMSO). For multivariate peptide design, three amino acid positions were selected because their modification was known to moderately affect binding, without abolishing it entirely. Predictive mathematical models were developed which related kinetic parameters (ka or kd) measured in standard buffer to the amino acid sequence of the antigen. ZZ‐scales and a helix‐forming‐tendency (HFT) scale were used as descriptors of the physico‐chemical properties of amino acids in the peptide antigen. These mathematical models had good predictive power (Q2 = 0.49 for ka, Q2 = 0.73 for kd). For the non‐essential residues under study, HFT and charge were found to be the most important factors that influenced the activity. Experiments in 19 buffers were performed to assess the sensitivity of the interactions to buffer composition. The presence of urea, DMSO and NaCl in the buffer influenced binding properties, while change in pH and the presence of EDTA and KSCN had no effect. The chemical sensitivity fingerprints were different for the various peptides. The results indicate that multivariate experimental design and mathematical modeling can be applied to the prediction of interaction kinetics. Copyright


PLOS ONE | 2011

Comparing the Epidermal Growth Factor Interaction with Four Different Cell Lines: Intriguing Effects Imply Strong Dependency of Cellular Context

Hanna Björkelund; Lars Gedda; Karl Andersson

The interaction of the epidermal growth factor (EGF) with its receptor (EGFR) is known to be complex, and the common over-expression of EGF receptor family members in a multitude of tumors makes it important to decipher this interaction and the following signaling pathways. We have investigated the affinity and kinetics of 125I-EGF binding to EGFR in four human tumor cell lines, each using four culturing conditions, in real time by use of LigandTracer®. Highly repeatable and precise measurements show that the overall apparent affinity of the 125I-EGF – EGFR interaction is greatly dependent on cell line at normal culturing conditions, ranging from KD≈200 pM on SKBR3 cells to KD≈8 nM on A431 cells. The 125I-EGF – EGFR binding curves (irrespective of cell line) have strong signs of multiple simultaneous interactions. Furthermore, for the cell lines A431 and SKOV3, gefitinib treatment increases the 125I-EGF - EGFR affinity, in particular when the cells are starved. The 125I-EGF - EGFR interaction on cell line U343 is sensitive to starvation while as on SKBR3 it is insensitive to gefitinib and starvation. The intriguing pattern of the binding characteristics proves that the cellular context is important when deciphering how EGF interacts with EGFR. From a general perspective, care is advisable when generalizing ligand-receptor interaction results across multiple cell-lines.


Cancer Biotherapy and Radiopharmaceuticals | 2013

In vivo and in vitro studies on renal uptake of radiolabeled affibody molecules for imaging of HER2 expression in tumors

Mohamed Altai; Zohreh Varasteh; Karl Andersson; Annemarie Eek; Otto C. Boerman; Anna Orlova

Affibody molecules (6-7 kDa) are a new class of small robust three-helical scaffold proteins. Radiolabeled subnanomolar anti-HER2 affibody ZHER2:342 was developed for imaging of HER2 expression in tumors, and a clinical study has demonstrated that the (111)In- and (68)Ga-labeled affibody molecules can efficiently detect HER2 expressing metastases in breast cancer patients. However, a significant renal accumulation of radioactivity after systemic injection of a radiolabeled anti-HER2 affibody conjugate is observed. The aim of this study was to investigate the mechanism of renal reabsorption of anti-HER2 affibody at the molecular level. Renal accumulation of radiolabeled anti-HER2 affibody molecules was studied in a murine model and in vitro using opossum-derived proximal tubule (OK) cells. It was found that kidney reabsorption of affibody molecule was not driven by megalin/cubilin. Amino acids in the target-binding side of affibody molecule were involved in binding to OK cells. On OK cells, two types of receptors for anti-HER2 affibody molecule were found: KD1=0.8 nM, Bmax1=71,500 and KD2=9.2 nM, Bmax2=367,000. The results of the present study indicate that affibody molecule and other scaffold-based targeting proteins with a relatively low kidney uptake can be selected using in vitro studies with tubular kidney cells.


Expert Opinion on Drug Discovery | 2006

Label-free kinetic binding data as a decisive element in drug discovery.

Karl Andersson; Robert Karlsson; Stefan Löfås; Gary Franklin; Markku Hämäläinen

The emerging possibilities to obtain label-free, kinetic-based binding data for drug–target and drug absorption, distribution, metabolism and excretion (ADME)–marker interactions have proven useful in many drug discovery related issues. Multiple reports have demonstrated that the common use of affinity as an early measure of drug potency may be directly misleading. This review summarises findings in the literature related to compound selection in the drug discovery process. It is important to understand the different properties of association and dissociation rates, the former being related to both structure and dosage and the latter depending solely on molecular structure. By performing parallel optimisations of association and dissociation rates, compounds with desirable kinetic profiles for target binding may be generated. In addition, compound selection may also consider the kinetic properties of the drug–ADME–marker binding profiles, further refining the quality of compounds early in the drug discovery process. The promising results found in the literature indicate that kinetic data on drug–protein interactions may soon become a crucial decisive element in modern drug discovery.


Biosensors and Bioelectronics | 2013

Development of a rapid low cost fluorescent biosensor for the detection of food contaminants

Terry McGrath; Karl Andersson; Katrina Campbell; Terry Fodey; Christopher T. Elliott

A prototype fluorescent based biosensor has been developed for the antibody based detection of food related contaminants. Its performance was characterised and showed a typical antibody binding signal of 200-2000 mV, a short term noise of 9.1 mV, and baseline slope of -0.016 mV/s over 4h. Bulk signal detection repeatability (n=23) and reproducibility (n=3) were less than 2.4%CV. The biosensor detection unit was evaluated using two food related model systems proving its ability to monitor both binding using commercial products and inhibition through the development of an assay. This assay development potential was evaluated by observing the biosensors performance whilst appraising several labelled antibody and glass slide configurations. The molecular interaction between biotin and an anti-biotin antibody was shown to be inhibited by 41% due to the presence of biotin in a sample. A food toxin (domoic acid) calibration curve was produced, with %CVs ranging from 2.7 to 7.8%, and a midpoint of approximately 17 ng/ml with further optimisation possible. The ultimate aim of this study was to demonstrate the working principles of this innovative biosensor as a potential portable tool with the opportunity of interchangeable assays. The biosensor design is applicable for the requirements of routine food contaminant analysis, with respect to performance, functionality and cost.


International Journal of Oncology | 2011

Protein interactions with HER-family receptors can have different characteristics depending on the hosting cell line

Pavel Barta; Jennie Malmberg; Ludmila Melicharova; John Strandgård; Anna Orlova; Vladimir Tolmachev; Milan Laznicek; Karl Andersson

Cell lines are common model systems in the development of therapeutic proteins and in the research on cellular functions and dysfunctions. In this field, the protein interaction assay is a frequently used tool for assessing the adequacy of a protein for diagnostic and therapeutic purposes. In this study, we investigated the extent to which the interaction characteristics depend on the choice of cell line for HER-family receptors. The interaction characteristics of two therapeutic antibodies (trastuzumab and cetuximab) and one Affibody molecule (ZHER2:342), interacting with the intended receptor were characterized with high precision using an automated real-time interaction method, in different cell lines (HaCaT, A431, HEP-G2, SKOV3, PC3, DU-145). Clear differences in binding affinity and kinetics, up to one order of magnitude, were found for the interaction of the same protein binding to the same receptor on different cells for all three proteins. For HER-family receptors, it is therefore important to refer to the measured affinity for a protein-receptor interaction together with the hosting cell line. The ability to accurately measure affinity and kinetics of a protein-receptor interaction on cell lines of different origins may increase the understanding of underlying receptor biology, and impact the selection of candidates in the development of therapeutic or diagnostic agents.

Collaboration


Dive into the Karl Andersson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Orlova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavel Barta

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Vladimir Tolmachev

Institute on Taxation and Economic Policy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

František Trejtnar

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge