Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl B. Seydel is active.

Publication


Featured researches published by Karl B. Seydel.


Blood | 2013

Loss of endothelial protein C receptors links coagulation and inflammation to parasite sequestration in cerebral malaria in African children.

Christopher A. Moxon; Samuel C. Wassmer; Danny A. Milner; Ngawina V. Chisala; Terrie E. Taylor; Karl B. Seydel; Malcolm E. Molyneux; Brian Faragher; Charles T. Esmon; Colin Downey; Cheng Hock Toh; Alister Craig; Robert S. Heyderman

Cerebral malaria (CM) is a major cause of mortality in African children and the mechanisms underlying its development, namely how malaria-infected erythrocytes (IEs) cause disease and why the brain is preferentially affected, remain unclear. Brain microhemorrhages in CM suggest a clotting disorder, but whether this phenomenon is important in pathogenesis is debated. We hypothesized that localized cerebral microvascular thrombosis in CM is caused by a decreased expression of the anticoagulant and protective receptors thrombomodulin (TM) and endothelial protein C receptor (EPCR) and that low constitutive expression of these regulatory molecules in the brain make it particularly vulnerable. Autopsies from Malawian children with CM showed cerebral fibrin clots and loss of EPCR, colocalized with sequestered IEs. Using a novel assay to examine endothelial phenotype ex vivo using subcutaneous microvessels, we demonstrated that loss of EPCR and TM at sites of IE cytoadherence is detectible in nonfatal CM. In contrast, although clotting factor activation was seen in the blood of CM patients, this was compensated and did not disseminate. Because of the pleiotropic nature of EPCR and TM, these data implicate disruption of the endothelial protective properties at vulnerable sites and particularly in the brain, linking coagulation and inflammation with IE sequestration.


Lancet Neurology | 2010

Blantyre Malaria Project Epilepsy Study (BMPES) of neurological outcomes in retinopathy-positive paediatric cerebral malaria survivors: a prospective cohort study

Gretchen L. Birbeck; Malcolm E. Molyneux; Peter W. Kaplan; Karl B. Seydel; Yamikani Chimalizeni; Kondwani Kawaza; Terrie E. Taylor

Summary Background Cerebral malaria, a disorder characterised by coma, parasitaemia, and no other evident cause of coma, is challenging to diagnose definitively in endemic regions that have high rates of asymptomatic parasitaemia and limited neurodiagnostic facilities. A recently described malaria retinopathy improves diagnostic specificity. We aimed to establish whether retinopathy-positive cerebral malaria is a risk factor for epilepsy or other neurodisabilities. Methods Between 2005 and 2007, we did a prospective cohort study of survivors of cerebral malaria with malaria retinopathy in Blantyre, Malawi. Children with cerebral malaria were identified at the time of their index admission and age-matched to concurrently admitted children without coma or nervous system infection. Initially matching of cases to controls was 1:1 but, in 2006, enrolment criteria for cerebral malaria survivors were revised to limit inclusion to children with cerebral malaria and retinopathy on the basis of indirect ophthalmoscopic examination; matching was then changed to 1:2 and the revised inclusion criteria were applied retrospectively for children enrolled previously. Clinical assessments at discharge and standardised nurse-led follow-up every 3 months thereafter were done to identify children with new seizure disorders or other neurodisabilities. A Kaplan-Meier survival analysis was done for incident epilepsy. Findings 132 children with retinopathy-positive cerebral malaria and 264 age-matched, non-comatose controls were followed up for a median of 495 days (IQR 195–819). 12 of 132 cerebral malaria survivors developed epilepsy versus none of 264 controls (odds ratio [OR] undefined; p<0·0001). 28 of 121 cerebral malaria survivors developed new neurodisabilities, characterised by gross motor, sensory, or language deficits, compared with two of 253 controls (OR 37·8, 95% CI 8·8–161·8; p<0·0001). The risk factors for epilepsy in children with cerebral malaria were a higher maximum temperature (39·4°C [SD 1·2] vs 38·5°C [1·1]; p=0·01) and acute seizures (11/12 vs 76/120; OR 6·37, 95% CI 1·02–141·2), and male sex was a risk factor for new neurodisabilities (20/28 vs 38/93; OR 3·62, 1·44–9·06). Interpretation Almost a third of retinopathy-positive cerebral malaria survivors developed epilepsy or other neurobehavioural sequelae. Neuroprotective clinical trials aimed at managing hyperpyrexia and optimising seizure control are warranted. Funding US National Institutes of Health and Wellcome Trust.


The New England Journal of Medicine | 2015

Brain Swelling and Death in Children with Cerebral Malaria

Karl B. Seydel; Samuel D. Kampondeni; Clarissa Valim; Michael J. Potchen; Danny A. Milner; Francis Muwalo; Gretchen L. Birbeck; William G. Bradley; Lindsay L. Fox; Simon J. Glover; Colleen A. Hammond; Robert S. Heyderman; Cowles Chilingulo; Malcolm E. Molyneux; Terrie E. Taylor

BACKGROUND Case fatality rates among African children with cerebral malaria remain in the range of 15 to 25%. The key pathogenetic processes and causes of death are unknown, but a combination of clinical observations and pathological findings suggests that increased brain volume leading to raised intracranial pressure may play a role. Magnetic resonance imaging (MRI) became available in Malawi in 2009, and we used it to investigate the role of brain swelling in the pathogenesis of fatal cerebral malaria in African children. METHODS We enrolled children who met a stringent definition of cerebral malaria (one that included the presence of retinopathy), characterized them in detail clinically, and obtained MRI scans on admission and daily thereafter while coma persisted. RESULTS Of 348 children admitted with cerebral malaria (as defined by the World Health Organization), 168 met the inclusion criteria, underwent all investigations, and were included in the analysis. A total of 25 children (15%) died, 21 of whom (84%) had evidence of severe brain swelling on MRI at admission. In contrast, evidence of severe brain swelling was seen on MRI in 39 of 143 survivors (27%). Serial MRI scans showed evidence of decreasing brain volume in the survivors who had had brain swelling initially. CONCLUSIONS Increased brain volume was seen in children who died from cerebral malaria but was uncommon in those who did not die from the disease, a finding that suggests that raised intracranial pressure may contribute to a fatal outcome. The natural history indicates that increased intracranial pressure is transient in survivors. (Funded by the National Institutes of Health and Wellcome Trust U.K.).


Science Translational Medicine | 2014

Plasmodium falciparum transmission stages accumulate in the human bone marrow

Regina Joice; Sandra K. Nilsson; Jacqui Montgomery; Selasi Dankwa; Elizabeth S. Egan; Belinda J. Morahan; Karl B. Seydel; Lucia Bertuccini; Pietro Alano; Kim C. Williamson; Manoj T. Duraisingh; Terrie E. Taylor; Danny A. Milner; Matthias Marti

Sexual stages of the human malaria parasite Plasmodium falciparum use the hematopoietic system of the bone marrow as a developmental niche. Digging Deep for Malaria Parasites Malaria remains a major public health problem in developing countries. The pathogenesis of the most deadly of human malaria parasites, Plasmodium falciparum, is related to the ability of infected red blood cells to sequester in the microvasculature of deep tissues. Using an existing tissue collection from malaria autopsy cases, Joice et al. now reveal that P. falciparum transmission stages sequester in the hematopoietic system of the human bone marrow. This finding suggests that new mechanisms may be involved in the sequestration of these transmission stages and that the hematopoietic system may be a major site of formation, development, and maturation of malaria transmission stages. Transmission of Plasmodium falciparum malaria parasites requires formation and development of gametocytes, yet all but the most mature of these sexual parasite forms are absent from the blood circulation. We performed a systematic organ survey in pediatric cases of fatal malaria to characterize the spatial dynamics of gametocyte development in the human host. Histological studies revealed a niche in the extravascular space of the human bone marrow where gametocytes formed in erythroid precursor cells and underwent development before reentering the circulation. Accumulation of gametocytes in the hematopoietic system of human bone marrow did not rely on cytoadherence to the vasculature as does sequestration of asexual-stage parasites. This suggests a different mechanism for the sequestration of gametocytes that could potentially be exploited to block malaria transmission.


The Journal of Infectious Diseases | 2006

The Distribution and Intensity of Parasite Sequestration in Comatose Malawian Children

Karl B. Seydel; Danny A. Milner; Steve Kamiza; Malcolm E. Molyneux; Terrie E. Taylor

BACKGROUND The sequestration of Plasmodium falciparum-infected erythrocytes in capillary beds is a characteristic feature of severe malaria and is believed to be central to disease pathogenesis. Sequestration occurs in all P. falciparum infections, including those in asymptomatic individuals. Therefore, sequestration cannot be the sole determinant of severe disease; the intensity or distribution of infected erythrocytes may also contribute. Discerning the relationship between sequestration and well-defined clinical syndromes may enhance understanding of disease mechanisms. METHODS We measured the concentration of parasite-derived lactate dehydrogenase (pLDH) in tissue samples obtained at autopsy from patients with clinically defined cerebral malaria. On the basis of the autopsy findings, patients were divided into 2 groups: those with an identifiable, nonmalarial cause of death and those without, who were presumed to have died of cerebral malaria. The concentration of pLDH, as determined by enzyme-linked immunosorbent assay, was used to estimate parasite load in different organs. RESULTS When pLDH could be detected, the parasite load was higher in patients with presumed cerebral malaria than in parasitemic patients with assumed cerebral malaria with a nonmalaria cause of death identified at autopsy (P<.05 for brain, intestine, and skin). CONCLUSIONS These findings suggest that sequestration in patients with fatal cerebral malaria occurs in multiple organs and does not reflect a predilection in the parasite for the cerebral vasculature.


PLOS ONE | 2010

Endothelium-Based Biomarkers Are Associated with Cerebral Malaria in Malawian Children: A Retrospective Case-Control Study

Andrea L. Conroy; Happy T. Phiri; Michael Hawkes; Simon J. Glover; Mac Mallewa; Karl B. Seydel; Terrie E. Taylor; Malcolm E. Molyneux; Kevin C. Kain

Background Differentiating cerebral malaria (CM) from other causes of serious illness in African children is problematic, owing to the non-specific nature of the clinical presentation and the high prevalence of incidental parasitaemia. CM is associated with endothelial activation. In this study we tested the hypothesis that endothelium-derived biomarkers are associated with the pathophysiology of severe malaria and may help identify children with CM. Methods and Findings Plasma samples were tested from children recruited with uncomplicated malaria (UM; n = 32), cerebral malaria with retinopathy (CM-R; n = 38), clinically defined CM without retinopathy (CM-N; n = 29), or non-malaria febrile illness with decreased consciousness (CNS; n = 24). Admission levels of angiopoietin-2 (Ang-2), Ang-1, soluble Tie-2 (sTie-2), von Willebrand factor (VWF), its propeptide (VWFpp), vascular endothelial growth factor (VEGF), soluble ICAM-1 (sICAM-1) and interferon-inducible protein 10 (IP-10) were measured by ELISA. Children with CM-R had significantly higher median levels of Ang-2, Ang-2:Ang-1, sTie-2, VWFpp and sICAM-1 compared to children with CM-N. Children with CM-R had significantly lower median levels of Ang-1 and higher median concentrations of Ang-2:Ang-1, sTie-2, VWF, VWFpp, VEGF and sICAM-1 compared to UM, and significantly lower median levels of Ang-1 and higher median levels of Ang-2, Ang-2:Ang-1, VWF and VWFpp compared to children with fever and altered consciousness due to other causes. Ang-1 was the best discriminator between UM and CM-R and between CNS and CM-R (areas under the ROC curve of 0.96 and 0.93, respectively). A comparison of biomarker levels in CM-R between admission and recovery showed uniform increases in Ang-1 levels, suggesting this biomarker may have utility in monitoring clinical response. Conclusions These results suggest that endothelial proteins are informative biomarkers of malarial disease severity. These results require validation in prospective studies to confirm that this group of biomarkers improves the diagnostic accuracy of CM from similar conditions causing fever and altered consciousness.


Critical Care Medicine | 2012

Angiopoietin-2 levels are associated with retinopathy and predict mortality in Malawian children with cerebral malaria: a retrospective case-control study

Andrea L. Conroy; Simon J. Glover; Michael Hawkes; Laura K. Erdman; Karl B. Seydel; Terrie E. Taylor; Malcolm E. Molyneux; Kevin C. Kain

Objective:To investigate the relationship among the angiopoietin–Tie-2 system, retinopathy, and mortality in children with cerebral malaria. Design:A case–control study of retinopathy-positive vs. retinopathy-negative children with clinically defined cerebral malaria. Setting:Queen Elizabeth Central Hospital in Blantyre, Malawi. Subjects:One hundred fifty-five children presenting with severe malaria and meeting a strict definition of clinical cerebral malaria (Blantyre Coma Score ⩽2, Plasmodium falciparum parasitemia, no other identifiable cause for coma) were included in the study. Interventions:None. Measurements and Main Results:Clinical and laboratory parameters were recorded at admission and funduscopic examinations were performed. Admission levels of angiopoietin-1, angiopoietin-2, and a soluble version of their cognate receptor were measured by enzyme-linked immunosorbent assay. We show that angiopoietin-1 levels are decreased and angiopoietin-2 and soluble Tie-2 levels are increased in children with cerebral malaria who had retinopathy compared with those who did not. Angiopoietin-2 and soluble Tie-2 were independent predictors of retinopathy (adjusted odds ratio [95% CI], angiopoietin-2, 4.3 [1.3–14.6], p = .019; soluble Tie-2, 9.7 [2.1–45.8], p = .004). Angiopoietin-2 and soluble Tie-2 were positively correlated with the number of hemorrhages, the severity or retinal whitening, and the extent of capillary whitening observed on funduscopic examination (p < .05 after adjustment for multiple comparisons). Angiopoietin-2 and soluble Tie-2 levels were elevated in children with cerebral malaria who subsequently died and angiopoetin-2 was an independent predictor of death (adjusted odds ratio: 3.9 [1.2–12.7], p = .024). When combined with clinical parameters, angiopoetin-2 improved prediction of mortality using logistic regression models and classification trees. Conclusions:These results provide insights into mechanisms of endothelial activation in cerebral malaria and indicate that the angiopoietin–Tie-2 axis is associated with retinopathy and mortality in pediatric cerebral malaria.


Frontiers in Cellular and Infection Microbiology | 2014

The systemic pathology of cerebral malaria in African children

Danny A. Milner; Richard O. Whitten; Steve Kamiza; Richard A. Carr; George N. Liomba; Charles Dzamalala; Karl B. Seydel; Malcolm E. Molyneux; Terrie E. Taylor

Pediatric cerebral malaria carries a high mortality rate in sub-Saharan Africa. We present our systematic analysis of the descriptive and quantitative histopathology of all organs sampled from a series of 103 autopsies performed between 1996 and 2010 in Blantyre, Malawi on pediatric cerebral malaria patients and control patients (without coma, or without malaria infection) who were clinically well characterized prior to death. We found brain swelling in all cerebral malaria patients and the majority of controls. The histopathology in patients with sequestration of parasites in the brain demonstrated two patterns: (a) the “classic” appearance (i.e., ring hemorrhages, dense sequestration, and extra-erythrocytic pigment) which was associated with evidence of systemic activation of coagulation and (b) the “sequestration only” appearance associated with shorter duration of illness and higher total burden of parasites in all organs including the spleen. Sequestration of parasites was most intense in the gastrointestinal tract in all parasitemic patients (those with cerebral malarial and those without).


The Journal of Infectious Diseases | 2012

Plasma Concentrations of Parasite Histidine-Rich Protein 2 Distinguish Between Retinopathy-Positive and Retinopathy-Negative Cerebral Malaria in Malawian Children

Karl B. Seydel; Lindsay L. Fox; Simon J. Glover; Mathew J. Reeves; Paul Pensulo; Alice Muiruri; Ashley Mpakiza; Malcolm E. Molyneux; Terrie E. Taylor

BACKGROUND Brain histology and ophthalmoscopy suggest that approximately 25% of children with World Health Organization-defined cerebral malaria (CM) have a nonmalarial cause of death. Misclassification complicates clinical care, confounds studies of association, and may obfuscate successes in malaria control. Retinopathy predicts intracerebral parasite sequestration with >90% sensitivity and specificity, but detecting retinopathy requires well-trained personnel and expensive equipment. METHODS We investigated the utility of plasma concentrations of parasite histidine-rich protein 2 (pHRP2), a Plasmodium-specific protein, as a predictor of intracerebral parasite sequestration at autopsy and of malaria retinopathy on clinical examination in patients with clinically defined CM. RESULTS In 64 autopsy cases, 47 of whom had histological evidence of sequestration, the sensitivity and specificity of a plasma pHRP2 level of >1700 ng/mL were 98% and 94%, respectively, and the area under the receiver operating characteristic (AUROC) curve was 0.98. In a separate, prospectively studied group of 101 children with clinically defined CM, of whom 71 had retinopathy, the same pHRP2 cutoff predicted retinopathy-positivity with a sensitivity of 90% and specificity of 87% (AUROC, 0.90). CONCLUSIONS Elevated plasma pHRP2 concentrations can identify Malawian children with histologically confirmed or retinopathy-positive CM and is a more field-friendly approach to confirming the diagnosis than post mortem sampling or ophthalmoscopy.


PLOS ONE | 2015

School-Age Children Are a Reservoir of Malaria Infection in Malawi

Jenny A. Walldorf; Lauren M. Cohee; Jenna E. Coalson; Andy Bauleni; Kondwani Nkanaunena; Atupele Kapito-Tembo; Karl B. Seydel; Doreen Ali; Don P. Mathanga; Terrie E. Taylor; Clarissa Valim; Miriam K. Laufer

Malaria surveillance and interventions in endemic countries often target young children at highest risk of malaria morbidity and mortality. We aimed to determine whether school-age children and adults not captured in surveillance serve as a reservoir for malaria infection and may contribute to malaria transmission. Cross-sectional surveys were conducted in one rainy and one dry season in southern Malawi. Demographic and health information was collected for all household members. Blood samples were obtained for microscopic and PCR identification of Plasmodium falciparum. Among 5796 individuals aged greater than six months, PCR prevalence of malaria infection was 5%, 10%, and 20% in dry, and 9%, 15%, and 32% in rainy seasons in Blantyre, Thyolo, and Chikhwawa, respectively. Over 88% of those infected were asymptomatic. Participants aged 6–15 years were at higher risk of infection (OR=4.8; 95%CI, 4.0–5.8) and asymptomatic infection (OR=4.2; 95%CI, 2.7–6.6) than younger children in all settings. School-age children used bednets less frequently than other age groups. Compared to young children, school-age children were brought less often for treatment and more often to unreliable treatment sources. Conclusion: School-age children represent an underappreciated reservoir of malaria infection and have less exposure to antimalarial interventions. Malaria control and elimination strategies may need to expand to include this age group.

Collaboration


Dive into the Karl B. Seydel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malcolm E. Molyneux

Malawi-Liverpool-Wellcome Trust Clinical Research Programme

View shared research outputs
Top Co-Authors

Avatar

Danny A. Milner

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kami Kim

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge