Karl Farrow
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karl Farrow.
Neuron | 2013
Keisuke Yonehara; Karl Farrow; Alexander Ghanem; Daniel Hillier; Kamill Balint; Miguel Teixeira; Josephine Jüttner; Masaharu Noda; Rachael L. Neve; Karl-Klaus Conzelmann; Botond Roska
Inferring the direction of image motion is a fundamental component of visual computation and essential for visually guided behavior. In the retina, the direction of image motion is computed in four cardinal directions, but it is not known at which circuit location along the flow of visual information the cardinal direction selectivity first appears. We recorded the concerted activity of the neuronal circuit elements of single direction-selective (DS) retinal ganglion cells at subcellular resolution by combining GCaMP3-functionalized transsynaptic viral tracing and two-photon imaging. While the visually evoked activity of the dendritic segments of the DS cells were direction selective, direction-selective activity was absent in the axon terminals of bipolar cells. Furthermore, the glutamate input to DS cells, recorded using a genetically encoded glutamate sensor, also lacked direction selectivity. Therefore, the first stage in which extraction of a cardinal motion direction occurs is the dendrites of DS cells.
Neuron | 2014
Volker Busskamp; Jacek Krol; Dasha Nelidova; Janine M Daum; Tamas Szikra; Ben Tsuda; Josephine Jüttner; Karl Farrow; Brigitte Gross Scherf; Claudia Patricia Patino Alvarez; Christel Genoud; Vithiyanjali Sothilingam; Naoyuki Tanimoto; Michael B. Stadler; Mathias W. Seeliger; Markus Stoffel; Witold Filipowicz; Botond Roska
The outer segments of cones serve as light detectors for daylight color vision, and their dysfunction leads to human blindness conditions. We show that the cone-specific disruption of DGCR8 in adult mice led to the loss of miRNAs and the loss of outer segments, resulting in photoreceptors with significantly reduced light responses. However, the number of cones remained unchanged. The loss of the outer segments occurred gradually over 1 month, and during this time the genetic signature of cones decreased. Reexpression of the sensory-cell-specific miR-182 and miR-183 prevented outer segment loss. These miRNAs were also necessary and sufficient for the formation of inner segments, connecting cilia and short outer segments, as well as light responses in stem-cell-derived retinal cultures. Our results show that miR-182- and miR-183-regulated pathways are necessary for cone outer segment maintenance in vivo and functional outer segment formation in vitro.
The Journal of Neuroscience | 2005
Karl Farrow; Alexander Borst; Juergen Haag
In the blowfly, the direction-selective response of the 60 lobula-plate tangential cells has been ascribed to the integration of local motion information across their extensive dendritic trees. Because the lobula plate is organized retinotopically, the receptive fields of the tangential cells ought to be determined by their dendritic architecture. However, this appears not always to be the case. One compelling example is the exceptionally wide receptive fields of the vertical system (VS) tangential cells. Using dual-intracellular recordings, Haag and Borst (2004) found VS cells to be mutually coupled in such a way that each VS cell is connected exclusively to its immediate neighbors. This coupling may form the basis of the broad receptive fields of VS cells. Here, we tested this hypothesis directly by photoablating individual VS cells. The receptive field width of VS cells indeed narrowed after the ablation of single VS cells, specifically depending on whether the receptive field of the ablated cell was more frontal or more posterior to the recorded cell. In particular, the responses changed as if the neuron lost access to visual information from the ablated neuron and those VS cells more distal than it from the recorded neuron. These experiments provide strong evidence that the lateral connections among VS cells are a crucial component in the mechanism underlying their complex receptive fields, augmenting the direct columnar input to their dendrites.
Journal of Neurophysiology | 2011
Karl Farrow; Richard H. Masland
Anatomy predicts that mammalian retinas should have in excess of 12 physiological channels, each encoding a specific aspect of the visual scene. Although several channels have been correlated with morphological cell types, the number of morphological types generally exceeds the known physiological types. Here, we attempted to sort the ganglion cells of the mouse retina purely on a physiological basis. The null hypothesis was that the outputs of the ganglion cells form a continuum or should be divided into only a few types. We recorded the spiking output of 471 retinal ganglion cells on a multielectrode array while presenting 4 classes of visual stimuli. Five parameters were chosen to describe each cells response characteristics, including relative amplitude of the ON and OFF responses, response latency, response transience, direction selectivity, and the receptive field surround. We compared the results of four clustering routines and judged the results using the relevant validation indices. The optimal partition was the 12-cluster solution of the Fuzzy Gustafson-Kessel algorithm. This classification contained three visual channels that carried predominately OFF responses, six that carried ON responses, and three that carried both ON and OFF information. They differed in other parameters as well. Other evidence suggests that the true number of cell types in the mouse retina may be somewhat larger than 12, and a definitive typology will probably require broader stimulus sets and characterization of more response parameters. Nonetheless, the present results do allow us to reject the null hypothesis: it appears that in addition to well-known cell types (such as the ON-OFF direction selectivity cells) numerous other cell classes can be identified in the mouse retina based solely on their responses to a standard set of simple visual stimuli.
Nature Neuroscience | 2006
Karl Farrow; Juergen Haag; Alexander Borst
Neurons in many species have large receptive fields that are selective for specific optic flow fields. Here, we studied the neural mechanisms underlying flow field selectivity in lobula plate tangential cells (LPTCs) of the blowfly. Among these cells, the H2 cell responds preferentially to visual stimuli approximating rotational optic flow. Through double recordings from H2 and many other LPTCs, we characterized a bidirectional commissural pathway that allows visual information to be shared between the hemispheres. This pathway is mediated by axo-axonal electrical coupling of H2 and the horizontal system equatorial (HSE) cell located in the opposite hemisphere. Using single-cell ablations, we found that this pathway is sufficient to allow H2 to amplify and attenuate dendritic input during binocular visual stimuli. This is accomplished through a modulation of H2s membrane potential by input from the contralateral HSE cell, which scales the firing rate of H2 during visual stimulation but is not sufficient to induce action potentials.
The Journal of Neuroscience | 2003
Karl Farrow; Juergen Haag; Alexander Borst
Flies rely heavily on visual motion cues for course control. This is mediated by a small set of motion-sensitive neurons called lobula plate tangential cells. A single class of these, the centrifugal horizontal (CH) neurons, play an important role in two pathways: figure-ground discrimination and flow-field selectivity. As was recently found, the dendrites of CH cells are electrically coupled with the dendritic tree of another class of neurons sensitive to horizontal image motion, the horizontal system (HS) cells. However, whether motion information arrives independently at both of these cells or is passed from one to the other is not known. Here, we examine the ipsilateral input circuitry to HS and CH neurons by selective laser ablation of individual interneurons. We find that the response of CH neurons to motion presented in front of the ipsilateral eye is entirely abolished after ablation of HS cells. In contrast, the motion response of HS cells persists after the ablation of CH cells. We conclude that HS cells receive direct motion input from local motion elements, whereas CH cells do not; their motion response is driven by HS cells. This connection scheme is discussed with reference to how the dendritic networks involved in figure-ground detection and flow-field selectivity might operate.
Nature Neuroscience | 2014
Tamas Szikra; Stuart Trenholm; Antonia Drinnenberg; Josephine Jüttner; Zoltan Raics; Karl Farrow; Martin Biel; Gautam B Awatramani; Damon A. Clark; José-Alain Sahel; Rava Azeredo da Silveira; Botond Roska
Vertebrate vision relies on two types of photoreceptors, rods and cones, which signal increments in light intensity with graded hyperpolarizations. Rods operate in the lower range of light intensities while cones operate at brighter intensities. The receptive fields of both photoreceptors exhibit antagonistic center-surround organization. Here we show that at bright light levels, mouse rods act as relay cells for cone-driven horizontal cell–mediated surround inhibition. In response to large, bright stimuli that activate their surrounds, rods depolarize. Rod depolarization increases with stimulus size, and its action spectrum matches that of cones. Rod responses at high light levels are abolished in mice with nonfunctional cones and when horizontal cells are reversibly inactivated. Rod depolarization is conveyed to the inner retina via postsynaptic circuit elements, namely the rod bipolar cells. Our results show that the retinal circuitry repurposes rods, when they are not directly sensing light, to relay cone-driven surround inhibition.
Journal of Neuroscience Methods | 2012
Michele Fiscella; Karl Farrow; Ian L. Jones; David Jäckel; Jan Müller; Urs Frey; Douglas J. Bakkum; Péter Hantz; Botond Roska; Andreas Hierlemann
In order to understand how retinal circuits encode visual scenes, the neural activity of defined populations of retinal ganglion cells (RGCs) has to be investigated. Here we report on a method for stimulating, detecting, and subsequently targeting defined populations of RGCs. The possibility to select a distinct population of RGCs for extracellular recording enables the design of experiments that can increase our understanding of how these neurons extract precise spatio-temporal features from the visual scene, and how the brain interprets retinal signals. We used light stimulation to elicit a response from physiologically distinct types of RGCs and then utilized the dynamic-configurability capabilities of a microelectronics-based high-density microelectrode array (MEA) to record their synchronous action potentials. The layout characteristics of the MEA made it possible to stimulate and record from multiple, highly overlapping RGCs simultaneously without light-induced artifacts. The high-density of electrodes and the high signal-to-noise ratio of the MEA circuitry allowed for recording of the activity of each RGC on 14±7 electrodes. The spatial features of the electrical activity of each RGC greatly facilitated spike sorting. We were thus able to localize, identify and record from defined RGCs within a region of mouse retina. In addition, we stimulated and recorded from genetically modified RGCs to demonstrate the applicability of optogenetic methods, which introduces an additional feature to target a defined cell type. The developed methodologies can likewise be applied to other neuronal preparations including brain slices or cultured neurons.
Frontiers in Neuroscience | 2015
Ian L. Jones; Thomas L. Russell; Karl Farrow; Michele Fiscella; Felix Franke; Jan Müller; David Jäckel; Andreas Hierlemann
Knowledge of neuronal cell types in the mammalian retina is important for the understanding of human retinal disease and the advancement of sight-restoring technology, such as retinal prosthetic devices. A somewhat less utilized animal model for retinal research is the hamster, which has a visual system that is characterized by an area centralis and a wide visual field with a broad binocular component. The hamster retina is optimally suited for recording on the microelectrode array (MEA), because it intrinsically lies flat on the MEA surface and yields robust, large-amplitude signals. However, information in the literature about hamster retinal ganglion cell functional types is scarce. The goal of our work is to develop a method featuring a high-density (HD) complementary metal-oxide-semiconductor (CMOS) MEA technology along with a sequence of standardized visual stimuli in order to categorize ganglion cells in isolated Syrian Hamster (Mesocricetus auratus) retina. Since the HD-MEA is capable of recording at a higher spatial resolution than most MEA systems (17.5 μm electrode pitch), we were able to record from a large proportion of RGCs within a selected region. Secondly, we chose our stimuli so that they could be run during the experiment without intervention or computation steps. The visual stimulus set was designed to activate the receptive fields of most ganglion cells in parallel and to incorporate various visual features to which different cell types respond uniquely. Based on the ganglion cell responses, basic cell properties were determined: direction selectivity, speed tuning, width tuning, transience, and latency. These properties were clustered to identify ganglion cell types in the hamster retina. Ultimately, we recorded up to a cell density of 2780 cells/mm2 at 2 mm (42°) from the optic nerve head. Using five parameters extracted from the responses to visual stimuli, we obtained seven ganglion cell types.
Neuron | 2013
Karl Farrow; Miguel Teixeira; Tamas Szikra; Tim James Viney; Kamill Balint; Keisuke Yonehara; Botond Roska