Karl Gertow
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karl Gertow.
Diabetologia | 2008
P. Sjögren; Justo Sierra-Johnson; Karl Gertow; M. Rosell; Bengt Vessby; U. de Faire; Anders Hamsten; Mai Lis Hellénius; Rachel M. Fisher
Aims/hypothesisFatty acid desaturases introduce double bonds into growing fatty acid chains. The key desaturases in humans are Δ5-desaturase (D5D), Δ6-desaturase (D6D) and stearoyl-CoA desaturase (SCD). Animal and human data implicate hepatic desaturase activities in insulin resistance, obesity and dyslipidaemia. However, the role of desaturase activity in adipose tissue is uncertain. We therefore evaluated relationships between adipose mRNA expression, estimated desaturase activities (fatty acid ratios) in adipose tissue and insulin resistance.MethodsSubcutaneous adipose tissue mRNA expression of D5D (also known as FADS1), D6D (also known as FADS2) and SCD was determined in 75 individuals representative of the study population of 294 healthy 63-year-old men. Desaturation indexes (product/substrate fatty acid ratios) were generated from adipose tissue fatty acid composition in all individuals. Insulin resistance was defined as the upper quartile of the updated homeostasis model assessment (HOMA-2) index.ResultsThe relevant desaturation indexes (16:1/16:0, 18:1/18:0, 20:4/20:3 and 18:3/18:2) reflected expression of SCD, but not of D5D or D6D in adipose tissue. Insulin-resistant individuals had a higher adipose tissue 18:1/18:0, but not 16:1/16:0 ratio than insulin-sensitive individuals. Individuals with a high adipose tissue 18:1/18:0 ratio were 4.4-fold (95% CI 1.8–11.8) more likely to be insulin resistant [threefold (95% CI 1.1–8.6) after adjustment for waist circumference and plasma triacylglycerol]. In a multiple regression model predicting HOMA-2, the independent effect of the 18:1/18:0 ratio was borderline (p = 0.086).Conclusions/interpretationAdipose tissue desaturation indexes of SCD reflect the expression of the gene encoding the enzyme in this tissue. Elevated SCD activity within adipose tissue is closely coupled to the development of insulin resistance.
Nature Biotechnology | 2000
Mats Nilsson; Gisela Barbany; Dan-Oscar Antson; Karl Gertow; Ulf Landegren
It is important that RNA molecules representing members of gene families are distinguished in expression analyses, and even greater resolving power may be required to identify allelic variants of transcripts in order to investigate imprinting or to study the distribution of mutant genes in tissues. Ligase-mediated gene detection allows precise distinction of DNA sequence variants, but it is not known if ligases can also be used to distinguish variants of RNA sequences. Here we present conditions for efficient ligation of pairs of DNA oligonucleotides hybridizing next to one another on RNA strands, permitting discrimination of any single nucleotide probe–target mismatch by a factor of between 20- and 200-fold. The mechanism allows padlock probes to be used to distinguish single-nucleotide variants in RNA. Ligase-mediated gene detection could therefore provide highly sensitive and accurate ligase-mediated detection and distinction of RNA sequence variants in solution, on DNA microarrays, and in situ.
Journal of the American College of Cardiology | 2012
Anna Helgadottir; Solveig Gretarsdottir; Gudmar Thorleifsson; Hilma Holm; Riyaz S. Patel; Thorarinn Gudnason; Gregory T. Jones; Andre M. van Rij; Danny J. Eapen; Annette F. Baas; David-Alexandre Trégouët; Pierre-Emmanuel Morange; Joseph Emmerich; Bengt Lindblad; Anders Gottsäter; Lambertus A Kiemeny; Jes Sanddal Lindholt; Natzi Sakalihasan; Robert E. Ferrell; David J. Carey; James R. Elmore; Philip S. Tsao; Niels Grarup; Torben Jørgensen; Daniel R. Witte; Torben Hansen; Oluf Pedersen; Roberto Pola; Eleonora Gaetani; Hulda B Magnadottir
OBJECTIVES The purpose of this study is investigate the effects of variants in the apolipoprotein(a) gene (LPA) on vascular diseases with different atherosclerotic and thrombotic components. BACKGROUND It is unclear whether the LPA variants rs10455872 and rs3798220, which correlate with lipoprotein(a) levels and coronary artery disease (CAD), confer susceptibility predominantly via atherosclerosis or thrombosis. METHODS The 2 LPA variants were combined and examined as LPA scores for the association with ischemic stroke (and TOAST [Trial of Org 10172 in Acute Stroke Treatment] subtypes) (effective sample size [n(e)] = 9,396); peripheral arterial disease (n(e) = 5,215); abdominal aortic aneurysm (n(e) = 4,572); venous thromboembolism (n(e) = 4,607); intracranial aneurysm (n(e) = 1,328); CAD (n(e) = 12,716), carotid intima-media thickness (n = 3,714), and angiographic CAD severity (n = 5,588). RESULTS LPA score was associated with ischemic stroke subtype large artery atherosclerosis (odds ratio [OR]: 1.27; p = 6.7 × 10(-4)), peripheral artery disease (OR: 1.47; p = 2.9 × 10(-14)), and abdominal aortic aneurysm (OR: 1.23; p = 6.0 × 10(-5)), but not with the ischemic stroke subtypes cardioembolism (OR: 1.03; p = 0.69) or small vessel disease (OR: 1.06; p = 0.52). Although the LPA variants were not associated with carotid intima-media thickness, they were associated with the number of obstructed coronary vessels (p = 4.8 × 10(-12)). Furthermore, CAD cases carrying LPA risk variants had increased susceptibility to atherosclerotic manifestations outside of the coronary tree (OR: 1.26; p = 0.0010) and had earlier onset of CAD (-1.58 years/allele; p = 8.2 × 10(-8)) than CAD cases not carrying the risk variants. There was no association of LPA score with venous thromboembolism (OR: 0.97; p = 0.63) or intracranial aneurysm (OR: 0.85; p = 0.15). CONCLUSIONS LPA sequence variants were associated with atherosclerotic burden, but not with primarily thrombotic phenotypes.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2008
Marta Brambilla; Marina Camera; Deborah Colnago; Giancarlo Marenzi; Monica De Metrio; Peter L. A. Giesen; Alessandra Balduini; Fabrizio Veglia; Karl Gertow; Paolo Biglioli; Elena Tremoli
Objective—Activated platelets and circulating platelet-leukocyte aggregates (PLA) are significantly higher in patients with unstable angina than in those with stable angina (SA). Platelets from healthy subjects express TF on activation. The aim of this study was to investigate the expression of TF in PLA, in platelets, and in monocytes of acute coronary syndrome (ACS) patients compared to SA patients and healthy subjects (Controls). Methods and Results—We enrolled 26 consecutive patients with ACS, 29 patients with SA, and 25 Controls. A significantly greater number of total and TF positive platelet-monocyte aggregates was found by flow cytometry in blood of ACS patients than in either SA patients (3-fold) or Controls (5-fold). ACS patients also had a significantly higher amount of TF-positive platelets than SA or Controls (>3-fold) and significantly higher thrombin generation capacity. TF mRNA expression in platelets was significantly higher in ACS patients than in SA or Controls. Conclusions—In ACS patients the greater expression of TF in platelets and PLA strengthens the link between platelet activation, blood coagulation, and thrombus formation and may further contribute to the hypercoagulability associated with the disease.
Diabetologia | 2004
Karl Gertow; Kirsi H. Pietiläinen; Hannele Yki-Järvinen; Jaakko Kaprio; Aila Rissanen; Per Eriksson; Anders Hamsten; Rachel M. Fisher
Aims/hypothesisProtein-mediated trans-membrane and intracellular fatty acid trafficking are becoming increasingly recognised as biochemically and physiologically important concepts. Obesity and insulin resistance are polygenic disorders, heavily influenced by environmental and life-style factors, and are virtually always associated with disturbed fatty acid metabolism in adipose and other tissues. The aim of this study was to investigate mRNA expression levels of fatty-acid-handling proteins in adipose tissue in relation to markers of genetic and acquired obesity and insulin resistance.MethodsWe quantified mRNA expression of subcutaneous adipose tissue fatty-acid-handling proteins (ALBP, KLBP, FATP1, FATP4, CD36, ACS1) in 17 monozygotic twin-pairs with a range of intra-pair differences (Δ) in BMI and detailed measures of obesity and insulin resistance, allowing influences of genetic and non-genetic factors to be distinguished.ResultsIn acquired obesity FATP4 expression was up-regulated independently of genetic background (ΔFATP4 versus ΔBMI; r=0.50, p=0.04; ΔFATP4 versus Δbody fat; r=0.59, p=0.01). Similarly, CD36 and FATP1 expression correlated with acquired differences in HDL cholesterol and non-esterified fatty acid concentrations respectively. Moreover, FATP4 and CD36 expression levels correlated with measures of obesity and insulin resistance that are influenced by both genetic and non-genetic factors (FATP4 versus BMI: r=0.53, p=0.0001; FATP4 versus body fat: r=0.51, p=0.002; FATP4 versus homeostasis model assessment [HOMA]: r=0.49, p=0.001; CD36 versus BMI: r=0.50, p=0.02; CD36 versus body fat: r=0.63, p=0.001; CD36 versus HOMA: r=0.34, p=0.06).Conclusions/interpretationThese findings indicate that expression of specific adipose tissue fatty-acid-handling proteins is related to obesity and insulin resistance, and that, in particular, FATP4 plays a role in acquired obesity. Our results suggest that facilitated fatty acid trafficking is a physiologically and pathologically relevant phenomenon in man.
Journal of the American Heart Association | 2015
Jonas Persson; Rona J. Strawbridge; Olga McLeod; Karl Gertow; Angela Silveira; Damiano Baldassarre; Natalie Van Zuydam; Sonia Shah; Cristiano Fava; Stefan Gustafsson; Fabrizio Veglia; Bengt Sennblad; Malin Larsson; Maria Sabater-Lleal; Karin Leander; Bruna Gigante; Adam G. Tabak; Mika Kivimäki; Jussi Kauhanen; Rainer Rauramaa; Andries J. Smit; Elmo Mannarino; Philippe Giral; Steve E. Humphries; Elena Tremoli; Ulf de Faire; Lars Lind; Erik Ingelsson; Bo Hedblad; Olle Melander
Background Plasma adiponectin levels have previously been inversely associated with carotid intima-media thickness (IMT), a marker of subclinical atherosclerosis. In this study, we used a sex-stratified Mendelian randomization approach to investigate whether adiponectin has a causal protective influence on IMT. Methods and Results Baseline plasma adiponectin concentration was tested for association with baseline IMT, IMT progression over 30 months, and occurrence of cardiovascular events within 3 years in 3430 participants (women, n =1777; men, n =1653) with high cardiovascular risk but no prevalent disease. Plasma adiponectin levels were inversely associated with baseline mean bifurcation IMT after adjustment for established risk factors (β =−0.018, P<0.001) in men but not in women (β =−0.006, P =0.185; P for interaction =0.061). Adiponectin levels were inversely associated with progression of mean common carotid IMT in men (β =−0.0022, P =0.047), whereas no association was seen in women (0.0007, P =0.475; P for interaction =0.018). Moreover, we observed that adiponectin levels were inversely associated with coronary events in women (hazard ratio 0.57, 95% CI 0.37 to 0.87) but not in men (hazard ratio 0.82, 95% CI 0.54 to 1.25). A gene score of adiponectin-raising alleles in 6 loci, reported recently in a large multi-ethnic meta-analysis, was inversely associated with baseline mean bifurcation IMT in men (β =−0.0008, P =0.004) but not in women (β =−0.0003, P =0.522; P for interaction =0.007). Conclusions This report provides some evidence for adiponectin protecting against atherosclerosis, with effects being confined to men; however, compared with established cardiovascular risk factors, the effect of plasma adiponectin was modest. Further investigation involving mechanistic studies is warranted.
Atherosclerosis | 2011
Karl Gertow; Elena Nobili; Lasse Folkersen; John W. Newman; Theresa L. Pedersen; Johan Ekstrand; Jesper Swedenborg; Hartmut Kühn; Craig E. Wheelock; Göran K. Hansson; Ulf Hedin; Jesper Z. Haeggström; Anders Gabrielsen
Lipoxygenase (ALOX) enzymes are implicated in both pro- and anti-atherogenic processes. The aim of this study was to investigate mRNA expression of 12- and 15-lipoxygenases (ALOX12, ALOX12B, ALOX15, ALOX15B) and the atypical ALOXE3 in human carotid atherosclerotic lesions, in relation to cerebrovascular symptoms and risk factors. The Biobank of Karolinska Endarterectomies (BiKE) collection of human carotid plaque tissue and associated clinical data was utilized (n=132). Lesion mRNA levels were analyzed by TaqMan qPCR (n=132) and microarray hybridization (n=77). Of the investigated mRNAs, only ALOX15B (15-LOX-2; epidermis-type 15-LOX) was readily detected in all plaque samples by qPCR, and thus suitable for quantitative statistical evaluation. ALOX12, ALOX12B, ALOX15 and ALOXE3 were detected with lower frequency and at lower levels, or virtually undetected. Microarray analysis confirmed ALOX15B as the most abundant 12- or 15-lipoxygenase mRNA in carotid lesions. Comparing plaques with or without attributable cerebrovascular symptoms (amaurosis fugax, transient ischemic attack, or stroke), ALOX15B mRNA levels were higher in symptomatic than asymptomatic plaques (1.31 [1.11-1.56], n=102; and 0.79 [0.55-1.15], n=30, respectively; p=0.008; mean [95% CI], arbitrary units). Multiple regression analysis confirmed symptomatic/asymptomatic status as a significant determinant of ALOX15B mRNA levels, independently of potentially confounding factors. Immunohistochemical analyses showed abundant ALOX15B expression in macrophage-rich areas of carotid lesions, and lipidomic analyses demonstrated the presence of typical ALOX15B products in plaque tissue. In summary, we observed associations between high ALOX15B expression in carotid lesions and a history of cerebrovascular symptoms. These findings suggest a link between ALOX15B and atherothrombotic events that merits further investigation.
European Journal of Clinical Nutrition | 2006
Karl Gertow; M. Rosell; Per Sjögren; Per Eriksson; Bengt Vessby; U. de Faire; Anders Hamsten; M.-L. Hellénius; Rachel M. Fisher
Objective:Proteins involved in cellular fatty acid (FA) uptake and metabolism may be of relevance in the context of disturbed FA metabolism associated with insulin resistance. Therefore this study investigated relationships between FA handling protein mRNA expression in adipose tissue, FA composition of adipose tissue and serum, and markers of insulin resistance.Subjects:75 subjects with a range of insulin sensitivities recruited from a cohort of 294 healthy 63-year-old Swedish men.Measurements:Anthropometric and biochemical variables (e.g. waist-hip-ratio (WHR) and homeostasis model assessment (HOMA) index of insulin sensitivity), FA composition of the subcutaneous (s.c.) gluteal adipose tissue, serum nonesterified FA (NEFA) and serum phospholipid compartments (by gas–liquid chromatography; n=294), and mRNA levels of FA handling proteins (adipocyte and keratinocyte lipid binding proteins, fatty acid transport protein (FATP) −1 and −4, CD36/fatty acid translocase, plasma membrane fatty acid binding protein, and acyl-CoA synthase-1 (ACS1)) in s.c. gluteal adipose tissue (by quantitative real-time polymerase chain reaction; n=75).Results:ACS1 expression was negatively correlated with measures of insulin resistance and central obesity (ACS1 versus HOMA: r=−0.28, P<0.05; ACS1 versus WHR: r=−0.23, P<0.05), with an opposite trend for FATP4. Further analysis of ACS1 expression levels revealed correlations with adipose tissue 16:0 (r=−0.27, P<0.05) and NEFA 16:1 (r=0.29, P<0.05), FA composition variables which in turn correlated with HOMA index (r=0.39, P<0.001 and r=−0.23, P<0.05, respectively, n=75). Moreover, NEFA 16:1 predicted ACS1 expression independently of HOMA, WHR and adipose tissue 16:0 in multiple regression analysis (standardized coefficient=0.27, P<0.05).Conclusion:Significant associations were found between measures of insulin sensitivity, adipose tissue FA handling protein expression, and specific FA composition variables. Although causal relationships could not be identified these findings suggest a role of FA handling proteins in relation to insulin sensitivity, via their involvement in FA trafficking and metabolism. In particular they indicate links between ACS1 activity, the distribution of 16:0 and 16:1, and insulin sensitivity, which may be of physiological relevance.
Atherosclerosis | 2003
Karl Gertow; Camilla Skoglund-Andersson; Per Eriksson; Susanna Boquist; Kristina Orth-Gomér; K. Schenck-Gustafsson; Anders Hamsten; Rachel M. Fisher
The fatty acid transport proteins (FATPs) have been implicated in facilitated cellular uptake of non-esterified fatty acids (NEFAs), thus having the potential to regulate local and systemic NEFA concentrations and metabolism. Hypothesising that genetic variation within the FATP genes may affect lipid metabolism, we investigated a G/A substitution at position 48 in intron 8 of the fatty acid transport-1 (FATP1) gene with respect to associations with fasting and post-prandial plasma lipid and lipoprotein variables in 628 healthy 50-year-old Swedish men and 426 Swedish women, aged 37-65 years. A subset of 105 men with the apoE3/E3 genotype underwent an oral fat tolerance test. Although fasting plasma TG concentrations were not different, male A/A individuals had significantly higher post-prandial TG concentrations and VLDL(1) (S(f) 60-400 apoB100)-to-VLDL(2) (S(f) 20-60 apoB100) ratio compared to male G/A and G/G individuals. A/A individuals apparently failed to suppress plasma NEFA concentrations during the oral fat tolerance test. Furthermore, fasting plasma concentrations of the largest, most buoyant LDL subfraction (LDL-I) were significantly lower in carriers of the A allele in the male cohort. Electromobility shift assays and reporter gene studies indicated that binding of nuclear factors and effect on transcriptional activity differ between the intron 8 alleles. These findings suggest that through regulation of NEFA trafficking, FATP1 might play a role in post-prandial lipid metabolism and development of cardiovascular disease.
Current Opinion in Lipidology | 2005
Rachel M. Fisher; Karl Gertow
Purpose of review Disturbed fatty acid metabolism and homeostasis is associated with insulin resistance. The aim of this review, therefore, is to summarize recent developments relating to the relevance and importance of the fatty acid transport proteins (FATPs) in the aetiology of insulin resistance. In particular, the potential differences between the six members of the FATP family will be considered. Recent findings FATP1 knockout mice failed to develop insulin resistance associated with lipid infusion or a high-fat diet, as wild-type mice did. FATP1-mediated fatty acid uptake may cause intramuscular lipid accumulation leading to insulin resistance in muscle if the fatty acids are not oxidized. While mouse models demonstrated an absolute requirement for FATP4 for survival, they provided no direct evidence for a role of FATP4 in insulin resistance. However, expression of FATP4 in human adipose tissue was increased in obesity (independent of genetic factors). While other members of the FATP family have important roles in fatty acid metabolism, they have not been clearly linked to insulin resistance. FATP-mediated fatty acid uptake may be driven by intrinsic acyl-CoA synthase activity. Summary Any role in the development of insulin resistance is likely to be different for each member of the FATP family. So far, both FATP1 and FATP4 have been associated with parameters related to insulin resistance. Whether increased FATP-mediated fatty acid uptake is beneficial or detrimental may be dependent on the tissue in question and on the subsequent fate of the fatty acids. These issues remain to be resolved.