Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl Grosh is active.

Publication


Featured researches published by Karl Grosh.


Journal of The Mechanics and Physics of Solids | 2004

A continuum treatment of growth in biological tissue: The coupling of mass transport and mechanics

Krishna Garikipati; Ellen M. Arruda; Karl Grosh; H. Narayanan; Sarah Calve

Growth (and resorption) of biological tissue is formulated in the continuum setting. The treatment is macroscopic, rather than cellular or sub-cellular. Certain assumptions that are central to classical continuum mechanics are revisited, the theory is reformulated, and consequences for balance laws and constitutive relations are deduced. The treatment incorporates multiple species. Sources and fluxes of mass, and terms for momentum and energy transfer between species are introduced to enhance the classical balance laws. The transported species include: (i) a fluid phase, and (ii) the precursors and byproducts of the reactions that create and break down tissue. A notable feature is that the full extent of coupling between mass transport and mechanics emerges from the thermodynamics. Contributions to fluxes from the concentration gradient, chemical potential gradient, stress gradient, body force and inertia have not emerged in a unified fashion from previous formulations of the problem. The present work demonstrates these effects via a physically consistent treatment. The presence of multiple, interacting species requires that the formulation be consistent with mixture theory. This requirement has far-reaching consequences. A preliminary numerical example is included to demonstrate some aspects of the coupled formulation.


Journal of Applied Mechanics | 2002

A Microstructurally Based Orthotropic Hyperelastic Constitutive Law

Jeffrey E. Bischoff; E. A. Arruda; Karl Grosh

A constitutive model is developed to characterize a general class of polymer and polymer-like materials that displays hyperelastic orthotropic mechanical behavior. The strain energy function is derived from the entropy change associated with the deformation of constituent macromolecules and the strain energy change associated with the deformation of a representative orthotropic unit cell. The ability of this model to predict nonlinear, orthotropic elastic behavior is examined by comparing the theory to experimental results in the literature. Simulations of more complicated boundary value problems are performed using the finite element method. ©2002 ASME


Journal of Biomechanics | 2000

Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive model

Jeffrey E. Bischoff; Ellen M. Arruda; Karl Grosh

The collagen network in skin is largely responsible for the nonlinear mechanical stress-strain response of skin. We hypothesize that the force-stretch response of collagen is governed by the entropics of long-chain molecules. We show that a constitutive model derived from the statistical mechanics of long-chain molecules, corresponding to the fibrous collagen network in skin, captures the mechanical response of skin. A connection between the physiologically meaningful parameters of network molecular chain density and free length of collagen fibers and the constitutively significant parameters of initial modulus and limiting stretch is thus established. The relevant constitutive law is shown to have predictive capabilities related to skin histology by replicating in vivo and in vitro experimental results. From finite element simulations, this modeling approach predicts that the collagen network in hypertrophic scars is more dense and the constituent collagen fibers have shorter free lengths than in healthy skin. Additionally, the model is shown to predict that as rat skin ages, collagen network density increases and fiber free length decreases. The importance of knowledge of the in situ stress state for analyzing skin response and validating constitutive laws is also demonstrated.


Journal of The Mechanics and Physics of Solids | 2005

Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network

Ellen Kuhl; Krishna Garikipati; Ellen M. Arruda; Karl Grosh

A new class of micromechanically motivated chain network models for soft biological tissues is presented. On the microlevel, it is based on the statistics of long chain molecules. A wormlike chain model is applied to capture the behavior of the collagen microfibrils. On the macrolevel, the network of collagen chains is represented by a transversely isotropic eight chain unit cell introducing one characteristic material axis. Biomechanically induced remodeling is captured by allowing for a continuous reorientation of the predominant unit cell axis driven by a biomechanical stimulus. To this end, we adopt the gradual alignment of the unit cell axis with the direction of maximum principal strain. The evolution of the unit cell axis’ orientation is governed by a first-order rate equation. For the temporal discretization of the remodeling rate equation, we suggest an exponential update scheme of Euler-Rodrigues type. For the spatial discretization, a finite element strategy is applied which introduces the current individual cell orientation as an internal variable on the integration point level. Selected model problems are analyzed to illustrate the basic features of the new model. Finally, the presented approach is applied to the biomechanically relevant boundary value problem of an in vitro engineered functional tendon construct.


Tissue Engineering | 2004

Engineering of Functional Tendon

Sarah Calve; Robert G. Dennis; Paul E. Kosnik; Keith Baar; Karl Grosh; Ellen M. Arruda

Surgical tendon repair is limited by the availability of viable tissue for transplantation. Because of its relatively avascular nature, tendon is a prime candidate for engineered tissue replacement. To address this problem, cells isolated from rat Achilles tendon were grown to confluence in culture and allowed to self-assemble into a cylinder between two anchor points. The resulting scaffold-free tissue was composed of aligned, small-diameter collagen fibrils, a large number of cells, and an excess of noncollagenous extracellular matrix; all characteristics of embryonic tendon. The stress-strain response of the constructs also resembles the nonlinear behavior of immature tendons, and the ultimate tensile strength is approximately equal to that of embryonic chick tendon, roughly 2 MPa. These physical and mechanical properties indicate that these constructs are the first viable tendons engineered in vitro, without the aid of artificial scaffolding.


Hearing Research | 2010

The remarkable cochlear amplifier

Jonathan Ashmore; P. Avan; William E. Brownell; Peter Dallos; Kai Dierkes; Robert Fettiplace; Karl Grosh; Carole M. Hackney; A. J. Hudspeth; Frank Jülicher; Benjamin Lindner; P. Martin; Julien Meaud; Christine Petit; J.R. Santos Sacchi; Barbara Canlon

This composite article is intended to give the experts in the field of cochlear mechanics an opportunity to voice their personal opinion on the one mechanism they believe dominates cochlear amplification in mammals. A collection of these ideas are presented here for the auditory community and others interested in the cochlear amplifier. Each expert has given their own personal view on the topic and at the end of their commentary they have suggested several experiments that would be required for the decisive mechanism underlying the cochlear amplifier. These experiments are presently lacking but if successfully performed would have an enormous impact on our understanding of the cochlear amplifier.


Journal of the Acoustical Society of America | 2007

A mechano-electro-acoustical model for the cochlea: Response to acoustic stimuli

Sripriya Ramamoorthy; Niranjan Deo; Karl Grosh

A linear, physiologically based, three-dimensional finite element model of the cochlea is developed. The model integrates the electrical, acoustic, and mechanical elements of the cochlea. In particular, the model includes interactions between structures in the organ of Corti (OoC), piezoelectric relations for outer hair cell (OHC) motility, hair bundle (HB) conductance that changes with HB deflection, current flow in the cross section and along the different scalae, and the feed-forward effect. The parameters in the model are based on guinea-pig data as far as possible. The model is vetted using a variety of experimental data on basilar membrane motion and data on voltages and currents in the OoC. Model predictions compare well, qualitatively and quantitatively, with experimental data on basilar membrane frequency response, impulse response, frequency glides, and scala tympani voltage. The close match of the model predictions with experimental data demonstrates the validity of the model for simulating cochlear response to acoustic input and for testing hypotheses of cochlear function. Analysis of the model and its results indicates that OHC somatic motility is capable of powering active amplification in the cochlea. At the same time, the model supports a possible synergistic role for HB motility in cochlear amplification.


Archives of Computational Methods in Engineering | 1996

Recent developments in finite element methods for structural acoustics

Isaac Harari; Karl Grosh; Thomas J. R. Hughes; Manish Malhotra; Peter M. Pinsky; James R. Stewart; L. L. Thompson

SummaryThe study of structural acoustics involves modeling acoustic radiation and scattering, primarily in exterior regions, coupled with elastic and structural wave propagation. This paper reviews recent progress in finite element analysis that renders computation a practical tool for solving problems of structural acoustics. The cost-effectiveness of finite element methods is composed of several ingredients. Boundary-value problems in unbounded domains are inappropriate for direct discretization. Employing DtN methodology yields an equivalent problem that is suitable for finite element analysis by posing impedance relations at an artificial exterior boundary. Vell-posedness of the resulting continuous formulations is discussed, leading to simple guidelines for practical implementation and verifying that DtN boundary conditions provide a suitable basis for computation.Approximation by Galerkin finite element methods results in spurious dispersion, degrading with reduced wave resolution. Accuracy is improved by Galerkin/least-squares and related technologies on the basis of detailed examinations of discrete errors in simplified settings, relaxing wave-resolution requirements. This methodology is applied to time-harmonic problems of acoustics and coupled problems of structural acoustics. Space-time finite methods based on time-discontinuous Galerkin/least-squares are derived for transient problems of structural acoustics. Numerical results validate the superior performance of Galerkin/least-squares finite elements for problems of structural acoustics.A comparative study of the cost of computation demonstrates that Galerkon/least-squares finite element methods are economically competitive with boundary element methods, the prevailing numerical approach to exterior problems of acoustics. Efficient iterative methods are derived for solving the large-scale matrix problems that arise in structural acoustics computation of realistics configuration at high wavenumbers. An a posteriori error estimator and adaptive strategy are developed for time-harmonic acoustic problems and the role of adaptivity in reducing the cost of computation is addressed.


Rubber Chemistry and Technology | 2001

A new constitutive model for the compressibility of elastomers at finite deformations

Jeffrey E. Bischoff; Ellen M. Arruda; Karl Grosh

Abstract Although traditional constitutive models for rubbery elastic materials are incompressible, many materials that demonstrate nonlinear elastic behavior are somewhat compressible. Clearly important in hydrostatic deformations, compressibility can also significantly affect the response of elastomers in applications for which several boundaries are rigidly fixed, such as bushings, or triaxial states of stress are realized. Compressibility is also important for convergence of finite element simulations in which a rubbery elastic constitutive law is in use. Volume changes that reflect compressibility have been observed historically in both uniaxial tension and hydrostatic compression tests; however, there appear to be no data obtained from both types of tests on the same material by which to validate a compressible hyperelastic law. In this paper, we propose a new compressible hyperelastic constitutive law for elastomers and other rubbery materials in which entropy and internal energy changes contribute...


Journal of the Acoustical Society of America | 2000

Three-dimensional numerical modeling for global cochlear dynamics

Anand Parthasarathi; Karl Grosh; Alfred L. Nuttall

A hybrid analytical-numerical model using Galerkin approximation to variational equations has been developed for predicting global cochlear responses. The formulation provides a flexible framework capable of incorporating morphologically based mechanical models of the cochlear partition and realistic geometry. The framework is applied for a simplified model with an emphasis on application of hybrid methods for three-dimensional modeling. The resulting formulation is modular, where matrices representing fluid and cochlear partition are constructed independently. Computational cost is reduced using two methods, a modal-finite-element method and a boundary element-finite-element method. The first uses a cross-mode expansion of fluid pressure (2.5D model) and the second uses a waveguide Greens-function-based boundary element method (BEM). A novel wave number approach to the boundary element formulation for interior problem results in efficient computation of the finite-element matrix. For the two methods a convergence study is undertaken using a simplified passive structural model of cochlear partition. It is shown that basilar membrane velocity close to best place is influenced by fluid and structural discretization. Cochlear duct pressure fields are also shown demonstrating the 3D nature of pressure near best place.

Collaboration


Dive into the Karl Grosh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julien Meaud

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yizeng Li

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge