Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl J. Aichberger is active.

Publication


Featured researches published by Karl J. Aichberger.


American Journal of Hematology | 2011

Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML

Karl J. Aichberger; Susanne Herndlhofer; Gerit-Holger Schernthaner; Martin Schillinger; Gerlinde Mitterbauer-Hohendanner; Christian Sillaber; Peter Valent

The second generation BCR/ABL kinase inhibitor nilotinib is increasingly used for the treatment of imatinib‐resistant chronic myeloid leukemia (CML). So far, nilotinib is considered a well‐tolerated drug with little if any side effects, although an increase in the fasting glucose level has been reported. We examined a series of 24 consecutive CML patients treated with nilotinib in our center for the development of non‐hematologic adverse events. Three of these 24 CML patients developed a rapidly progressive peripheral arterial occlusive disease (PAOD) during treatment with nilotinib. In all three cases, PAOD required repeated angioplasty and/or multiple surgeries within a few months. No PAOD was known before nilotinib‐therapy in these patients, although all three had received imatinib. In two patients, pre‐existing risk factors predisposing for PAOD were known, and one of them had developed diabetes mellitus during nilotinib. In the other 21 patients treated with nilotinib in our center, one less severe PAOD, one myocardial infarction, one spinal infarction, one subdural hematoma, and one sudden death of unknown etiology were recorded. In summary, treatment with nilotinib may be associated with an increased risk of vascular adverse events, including PAOD development. In a subgroup of patients, these events are severe or even life‐threatening. Although the exact mechanisms remain unknown, we recommend screening for pre‐existing PAOD and for vascular risk factors such as diabetes mellitus in all patients before starting nilotinib and in the follow up during nilotinib‐therapy. Am. J. Hematol. 2011.


Blood | 2010

CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms

Jeffrey W. Tyner; Thomas Bumm; Jutta Deininger; Lisa Wood; Karl J. Aichberger; Marc Loriaux; Brian J. Druker; Christopher J. Burns; Emmanuelle Fantino; Michael W. Deininger

Activating alleles of Janus kinase 2 (JAK2) such as JAK2(V617F) are central to the pathogenesis of myeloproliferative neoplasms (MPN), suggesting that small molecule inhibitors targeting JAK2 may be therapeutically useful. We have identified an aminopyrimidine derivative (CYT387), which inhibits JAK1, JAK2, and tyrosine kinase 2 (TYK2) at low nanomolar concentrations, with few additional targets. Between 0.5 and 1.5muM CYT387 caused growth suppression and apoptosis in JAK2-dependent hematopoietic cell lines, while nonhematopoietic cell lines were unaffected. In a murine MPN model, CYT387 normalized white cell counts, hematocrit, spleen size, and restored physiologic levels of inflammatory cytokines. Despite the hematologic responses and reduction of the JAK2(V617F) allele burden, JAK2(V617F) cells persisted and MPN recurred upon cessation of treatment, suggesting that JAK2 inhibitors may be unable to eliminate JAK2(V617F) cells, consistent with preliminary results from clinical trials of JAK2 inhibitors in myelofibrosis. While the clinical benefit of JAK2 inhibitors may be substantial, not the least due to reduction of inflammatory cytokines and symptomatic improvement, our data add to increasing evidence that kinase inhibitor monotherapy of malignant disease is not curative, suggesting a need for drug combinations to optimally target the malignant cells.


The American Journal of Surgical Pathology | 2004

CD25 indicates the neoplastic phenotype of mast cells: a novel immunohistochemical marker for the diagnosis of systemic mastocytosis (SM) in routinely processed bone marrow biopsy specimens.

Karl Sotlar; Hans-Peter Horny; Ingrid Simonitsch; Manuela Krokowski; Karl J. Aichberger; Matthias Mayerhofer; Dieter Printz; Gerhard Fritsch; Peter Valent

The diagnosis of systemic mastocytosis (SM) is based primarily on the histologic and immunohistochemical evaluation of a bone marrow trephine biopsy specimen. Although mast cell (MC) specific antigens like tryptase and chymase are detectable in routinely processed tissue, no immunohistochemical markers that can be used to discriminate between normal and neoplastic MCs are yet available. We have investigated the diagnostic value of an antibody against CD25 for the immunohistochemical detection of MCs in bone marrow sections in 73 patients with SM and 75 control cases (reactive marrow, n = 54; myelogenous neoplasms, n = 21) and correlated the results with the presence of c-kit mutations. While MCs in almost all patients with SM (72 of 73) expressed CD25, none of the control samples contained CD25-positive MCs. Irrespective of the SM subtype, most of neoplastic MCs expressed CD25. In 3 patients with advanced MC disease, pure populations of neoplastic MCs were obtained and found to express CD25 mRNA by RT-PCR analysis. In addition, all patients with CD25-positive MCs contained c-kit mutations, while all control cases exhibited wild type c-kit. CD25 therefore appears to be a reliable immunohistochemical marker for the discrimination of neoplastic from normal/reactive MCs, with potential as a diagnostic tool in SM.


Cancer Research | 2004

Identification of Heme Oxygenase-1 As a Novel BCR/ABL-Dependent Survival Factor in Chronic Myeloid Leukemia

Matthias Mayerhofer; Stefan Florian; Maria-Theresa Krauth; Karl J. Aichberger; Martin Bilban; Rodrig Marculescu; Dieter Printz; Gerhard Fritsch; Oswald Wagner; Edgar Selzer; Wolfgang R. Sperr; Peter Valent; Christian Sillaber

Chronic myeloid leukemia (CML) is a stem cell disease in which BCR/ABL promotes the survival of leukemic cells. Heme oxygenase-1 (HO-1) is an inducible stress protein that catalyzes the degradation of heme and has recently been implicated in the regulation of growth and survival of various neoplastic cells. In the present study, we analyzed the expression and role of HO-1 in CML cells. As assessed by Northern and Western blot analysis as well as immunostaining, primary CML cells were found to express HO-1 mRNA and the HO-1 protein in a constitutive manner. Exposure of these cells to the BCR/ABL tyrosine kinase inhibitor STI571 resulted in decreased expression of HO-1 mRNA and protein. In addition, BCR/ABL was found to up-regulate HO-1 promoter activity, mRNA levels, and protein levels in Ba/F3 cells. To investigate the role of HO-1 for survival of primary CML cells, the HO-1 inducer hemin was used. Hemin-induced expression of HO-1 was found to protect CML cells from STI571-induced cell death. In addition, inhibition of HO-1 by zinc-(II)-deuteroporphyrin-IX-2,4-bisethyleneglycol resulted in a substantial decrease of cell viability. Furthermore, overexpression of HO-1 in the CML-derived cell line K562 was found to counteract STI571-induced apoptosis. Together, our data identify HO-1 as a novel BCR/ABL-driven survival molecule and potential target in leukemic cells in patients with CML. The pathogenetic and clinical implications of this observation remain to be elucidated.


Blood | 2011

TNFα facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms

Angela G. Fleischman; Karl J. Aichberger; Samuel B. Luty; Thomas Bumm; Curtis L. Petersen; Shirin Doratotaj; Kavin B. Vasudevan; Dorian LaTocha; Fei Yang; Richard D. Press; Marc Loriaux; Heike L. Pahl; Richard T. Silver; Anupriya Agarwal; Thomas O'Hare; Brian J. Druker; Grover C. Bagby; Michael W. Deininger

Proinflammatory cytokines such as TNFα are elevated in patients with myeloproliferative neoplasms (MPN), but their contribution to disease pathogenesis is unknown. Here we reveal a central role for TNFα in promoting clonal dominance of JAK2(V617F) expressing cells in MPN. We show that JAK2(V617F) kinase regulates TNFα expression in cell lines and primary MPN cells and TNFα expression is correlated with JAK2(V617F) allele burden. In clonogenic assays, normal controls show reduced colony formation in the presence of TNFα while colony formation by JAK2(V617F)-positive progenitor cells is resistant or stimulated by exposure to TNFα. Ectopic JAK2(V617F) expression confers TNFα resistance to normal murine progenitor cells and overcomes inherent TNFα hypersensitivity of Fanconi anemia complementation group C deficient progenitors. Lastly, absence of TNFα limits clonal expansion and attenuates disease in a murine model of JAK2(V617F)-positive MPN. Altogether our data are consistent with a model where JAK2(V617F) promotes clonal selection by conferring TNFα resistance to a preneoplastic TNFα sensitive cell, while simultaneously generating a TNFα-rich environment. Mutations that confer resistance to environmental stem cell stressors are a recognized mechanism of clonal selection and leukemogenesis in bone marrow failure syndromes and our data suggest that this mechanism is also critical to clonal selection in MPN.


Haematologica | 2007

Synergistic growth-inhibitory effects of two tyrosine kinase inhibitors, dasatinib and PKC412, on neoplastic mast cells expressing the D816V-mutated oncogenic variant of KIT

Karoline V. Gleixner; Matthias Mayerhofer; Karoline Sonneck; Alexander Gruze; Puchit Samorapoompichit; Christian Baumgartner; Francis Y. Lee; Karl J. Aichberger; Paul W. Manley; Doriano Fabbro; Winfried F. Pickl; Christian Sillaber; Peter Valent

Background and Objectives In a majority of all patients with systemic mastocytosis (SM) including those with mast cell leukemia (MCL), neoplastic mast cells (MC) display the D816V-mutated variant of KIT. The respective oncoprotein, KIT D816V, exhibits constitutive tyrosine kinase (TK) activity and has been implicated in malignant cell growth. Therefore, several attempts have been made to identify KIT D816V-targeting drugs. Design and Methods We examined the effects of the novel TK-inhibitor dasatinib alone and in combination with other targeted drugs on growth of neoplastic MC. Results Confirming previous studies, dasatinib was found to inhibit the TK activity of wild type (wt) KIT and KIT-D816V as well as growth and survival of neoplastic MC and of the MCL cell line, HMC-1. The growth-inhibitory effects of dasatinib in HMC-1 cells were found to be associated with a decrease in expression of CD2 and CD63. In addition, we found that dasatinib blocks KIT D816V-induced cluster-formation and viability in Ba/F3 cells. In drug combination experiments, dasatinib was found to co-operate with PKC412, AMN107, imatinib, and 2CdA in producing growth-inhibition and apoptosis in neoplastic MC. In HMC-1.1 cells lacking KIT D816V, all drug interactions were found to be synergistic in nature. By contrast, in HMC-1.2 cells exhibiting KIT D816V, only the combinations dasatinib+PKC412 and dasatinib+2CdA were found to produce synergistic effects. Interpretation and Conclusions Combinations of targeted drugs may represent an interesting pharmacologic approach for the treatment of aggressive SM or MCL.


Current Opinion in Allergy and Clinical Immunology | 2004

Autoimmunity and atopic dermatitis.

Irene Mittermann; Karl J. Aichberger; Robert Bünder; Nadine Mothes; Harald Renz; Rudolf Valenta

Purpose of reviewIt has been demonstrated that a considerable percentage of patients suffering from atopic dermatitis mount IgE autoantibodies against a broad variety of human proteins. This review summarizes evidence for autoimmune mechanisms in atopic dermatitis and suggests novel pathomechanisms that may be involved in this disease. Recent findingsIt has been shown that patients suffering from atopic dermatitis exhibit IgE autoreactivity to human proteins. These autoantigens are expressed in a variety of cell and tissue types. Complementary DNAs coding for IgE autoantigens have been identified, cloned and characterized at the molecular level. Using purified recombinant IgE autoantigens, it has been shown in paradigmatic models that IgE autoimmunity may be a pathogenetic mechanism in atopic dermatitis. Moreover, it has been shown that the levels of IgE autoantibodies are associated with severity of disease. SummaryPatients suffering from severe manifestations of atopy mount IgE autoantibodies against a variety of human proteins. The levels of IgE autoantibodies correspond with disease severity. Several mechanisms of IgE autoimmunity may contribute to the pathogenesis of atopic dermatitis.


The FASEB Journal | 2005

Identification of mTOR as a novel bifunctional target in chronic myeloid leukemia: dissection of growth-inhibitory and VEGF-suppressive effects of rapamycin in leukemic cells

Matthias Mayerhofer; Karl J. Aichberger; Stefan Florian; Maria Theresa Krauth; Alexander W. Hauswirth; Sophia Derdak; Wolfgang R. Sperr; Harald Esterbauer; Oswald Wagner; Christine Marosi; Winfried F. Pickl; Michael W. Deininger; Ellen Weisberg; Brian J. Druker; James D. Griffin; Christian Sillaber; Peter Valent

The mammalian target of rapamycin (mTOR) has recently been described to be constitutively activated in Bcr‐Abl‐transformed cells and to mediate rapamycin‐induced inhibition of growth in respective cell lines. We have recently shown that rapamycin down‐regulates expression of vascular endothelial growth factor (VEGF), a mediator of leukemia‐associated angiogenesis, in primary CML cells. In the present study, we analyzed growth‐inhibitory in vitro and in vivo effects of rapamycin on primary CML cells and asked whether rapamycin‐induced suppression of VEGF in leukemic cells is related to growth inhibition. Rapamycin dose dependently inhibited growth of primary CML cells obtained from patients with imatinib‐responsive or imatinib‐resistant disease as well as growth of Bcr‐Abl‐transformed imatinib‐resistant cell lines. Moreover, we observed potent cytoreductive effects of rapamycin in a patient with imatinib‐resistant Bcr‐Abl+ leukemia. The growth‐inhibitory effects of rapamycin on CML cells were found to be associated with G1 cell cycle arrest and with induction of apoptosis. In all cell types tested, rapamycin was found to down‐regulate expression of VEGF. However, exogenously added VEGF did not counteract the rapamycin‐induced decrease in proliferation. In conclusion, rapamycin inhibits growth of CML cells in vitro and in vivo and, in addition, down‐regulates expression of VEGF. Both effects may contribute to the antileukemic activity of the drug in CML.


Journal of Immunology | 2005

Hom s 4, an IgE-Reactive Autoantigen Belonging to a New Subfamily of Calcium-Binding Proteins, Can Induce Th Cell Type 1-Mediated Autoreactivity

Karl J. Aichberger; Irene Mittermann; Renate Reininger; Susanne Seiberler; Ines Swoboda; Susanne Spitzauer; Tamara Kopp; Georg Stingl; Wolfgang R. Sperr; Peter Valent; Andreas Repa; Barbara Bohle; Dietrich Kraft; Rudolf Valenta

Skin inflammation in atopic dermatitis starts with Th2 and IgE-mediated responses against exogenous allergens and, for unknown reasons, resembles features of a Th1-driven reaction in the chronic stages. We report the characterization of a human protein, Hom s 4, recognized by IgE autoantibodies from atopic dermatitis patients. The complete Hom s 4 cDNA codes for a 54-kDa basic protein containing two typical calcium-binding domains separated by an unusually long α-helical domain. Therefore, Hom s 4 and homologous proteins found by sequence comparison in mice, fruit flies, and nematodes constitute a novel subfamily of calcium-binding proteins. Using Hom s 4-specific Abs, it is demonstrated that the protein is strongly expressed within epidermal keratinocytes and dermal endothelial cells. Purified Hom s 4 showed IgE cross-reactivity with exogenous calcium-binding allergens from plants and fish but, in contrast to the exogenous allergens, induced only weak histamine release from patient basophils. However, the analysis of Hom s 4-specific cytokine and humoral immune responses indicated that Hom s 4 strongly induces Th1 responses which are accompanied by the release of IFN-γ, a cytokine implicated in epithelial cell damage. Hom s 4-induced IFN-γ production was found in normal individuals, in patients with chronic inflammatory skin diseases and in Th2-prone atopic persons, suggesting that Hom s 4 represents a protein with an intrinsic property to induce Th1-mediated autoreactivity. It may thus contribute to chronic skin inflammation in atopic as well as in nonatopic persons.


Journal of Immunology | 2008

Unique Effects of KIT D816V in BaF3 Cells: Induction of Cluster Formation, Histamine Synthesis, and Early Mast Cell Differentiation Antigens

Matthias Mayerhofer; Karoline V. Gleixner; Andrea Hoelbl; Stefan Florian; Gregor Hoermann; Karl J. Aichberger; Martin Bilban; Harald Esterbauer; Maria-Theresa Krauth; Wolfgang R. Sperr; Jack B. Longley; Robert Kralovics; Richard Moriggl; Jacques Zappulla; Roland S. Liblau; Ilse Schwarzinger; Veronika Sexl; Christian Sillaber; Peter Valent

Oncogenic tyrosine kinases (TK) usually convert growth factor-dependent cells to factor independence with autonomous proliferation. However, TK-driven neoplasms often are indolent and characterized by cell differentiation rather than proliferation. A prototype of an indolent TK-driven neoplasm is indolent systemic mastocytosis. We found that the D816V-mutated variant of KIT, a TK detectable in most patients with systemic mastocytosis, induces cluster formation and expression of several mast cell differentiation and adhesion Ags, including microphthalmia transcription factor, IL-4 receptor, histamine, CD63, and ICAM-1 in IL-3-dependent BaF3 cells. By contrast, wild-type KIT did not induce cluster formation or mast cell differentiation Ags. Additionally, KIT D816V, but not wild-type KIT, induced STAT5 activation in BaF3 cells. However, despite these intriguing effects, KIT D816V did not convert BaF3 cells to factor-independent proliferation. Correspondingly, BaF3 cells with conditional expression of KIT D816V did not form tumors in nude mice. Together, the biologic effects of KIT D816V in BaF3 cells match strikingly with the clinical course of indolent systemic mastocytosis and with our recently established transgenic mouse model, in which KIT D816V induces indolent mast cell accumulations but usually does not induce a malignant mast cell disease. Based on all these results, it is hypothesized that KIT D816V as a single hit may be sufficient to cause indolent systemic mastocytosis, whereas additional defects may be required to induce aggressive mast cell disorders.

Collaboration


Dive into the Karl J. Aichberger's collaboration.

Top Co-Authors

Avatar

Peter Valent

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Matthias Mayerhofer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Christian Sillaber

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Winfried F. Pickl

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Maria-Theresa Krauth

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Wolfgang R. Sperr

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Karoline V. Gleixner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Sophia Derdak

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Harald Esterbauer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Karoline Sonneck

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge