Karl J. Campbell
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karl J. Campbell.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Holly P. Jones; Nick D. Holmes; Stuart H. M. Butchart; Bernie R. Tershy; Peter J. Kappes; Ilse Corkery; Alfonso Aguirre-Muñoz; Doug P. Armstrong; Elsa Bonnaud; Andrew A. Burbidge; Karl J. Campbell; Franck Courchamp; Philip E. Cowan; Richard J. Cuthbert; Steve Ebbert; Piero Genovesi; Gregg R. Howald; Bradford S. Keitt; Stephen W. Kress; Colin M. Miskelly; Steffen Oppel; Sally Poncet; Mark J. Rauzon; Gérard Rocamora; James C. Russell; Araceli Samaniego-Herrera; Philip J. Seddon; Dena R. Spatz; David R. Towns; Donald A. Croll
Significance Global conservation actions to prevent or slow extinctions and protect biodiversity are costly. However, few conservation actions have been evaluated for their efficacy globally, hampering the prioritization of conservation actions. Islands are key areas for biodiversity conservation because they are home to more than 15% of terrestrial species and more than one-third of critically endangered species; nearly two-thirds of recent extinctions were of island species. This research quantifies the benefits to native island fauna of removing invasive mammals from islands. Our results highlight the importance of this conservation measure for protecting the worlds most threatened species. More than US
Biological Invasions | 2013
Alistair S. Glen; Rachel Atkinson; Karl J. Campbell; Erin Hagen; Nick D. Holmes; Bradford S. Keitt; John P. Parkes; Alan Saunders; John Sawyer; Hernán Torres
21 billion is spent annually on biodiversity conservation. Despite their importance for preventing or slowing extinctions and preserving biodiversity, conservation interventions are rarely assessed systematically for their global impact. Islands house a disproportionately higher amount of biodiversity compared with mainlands, much of which is highly threatened with extinction. Indeed, island species make up nearly two-thirds of recent extinctions. Islands therefore are critical targets of conservation. We used an extensive literature and database review paired with expert interviews to estimate the global benefits of an increasingly used conservation action to stem biodiversity loss: eradication of invasive mammals on islands. We found 236 native terrestrial insular faunal species (596 populations) that benefitted through positive demographic and/or distributional responses from 251 eradications of invasive mammals on 181 islands. Seven native species (eight populations) were negatively impacted by invasive mammal eradication. Four threatened species had their International Union for the Conservation of Nature (IUCN) Red List extinction-risk categories reduced as a direct result of invasive mammal eradication, and no species moved to a higher extinction-risk category. We predict that 107 highly threatened birds, mammals, and reptiles on the IUCN Red List—6% of all these highly threatened species—likely have benefitted from invasive mammal eradications on islands. Because monitoring of eradication outcomes is sporadic and limited, the impacts of global eradications are likely greater than we report here. Our results highlight the importance of invasive mammal eradication on islands for protecting the worlds most imperiled fauna.
Journal of Wildlife Management | 2009
Felipe Cruz; Victor Carrion; Karl J. Campbell; Christian Lavoie; C. Josh Donlan
Invasive species are the greatest threat to island ecosystems, which harbour nearly half the world’s endangered biodiversity. However, eradication is more feasible on islands than on continents. We present a global analysis of 1,224 successful eradications of invasive plants and animals on 808 islands. Most involve single vertebrate species on uninhabited islands, but plant and invertebrate eradications occur more often on inhabited islands. Inhabited islands are often highly modified and support numerous introduced species. Consequently, targeting a single invasive species can be ineffective or counterproductive. The impacts of other pests will continue and, in some cases, be exacerbated. The presence of people also creates regulatory, logistical and socio-political constraints. Real or perceived health risks to inhabitants, pets and livestock may restrict the use of some eradication tools, and communities or individuals sometimes oppose eradication. Despite such challenges, managing invasive species is vital to conserve and restore the unique biodiversity of many inhabited islands, and to maintain or improve the welfare and livelihoods of island residents. We present a brief case study of the Juan Fernández Archipelago, Chile, and discuss the feasibility of eradicating large suites of invasive plants and animals from inhabited islands while managing other invaders for which eradication is not feasible or desirable. Eradications must be planned to account for species interactions. Monitoring and contingency plans must detect and address any ‘surprise effects’. Above all, it is important that the local community derives social, cultural and/or economic benefits, and that people support and are engaged in the restoration effort.
Oryx | 2004
Karl J. Campbell; C. Josh Donlan; Felipe Cruz; Victor Carrion
Abstract Invasive mammals are premier drivers of extinction and ecosystem change, particularly on islands. In the 1960s, conservation practitioners started developing techniques to eradicate invasive mammal populations from islands. Larger and more biologically complex islands are being targeted for restoration worldwide. We conducted a feral goat (Capra hircus) eradication campaign on Santiago Island in the Galápagos archipelago, which was an unprecedented advance in the ability to reverse biodiversity impacts by invasive species. We removed >79,000 goats from Santiago Island (58,465 ha) in <4.5 years, at an approximate cost of US
BioScience | 2013
Manuel Nogales; Eric Vidal; Félix M. Medina; Elsa Bonnaud; Bernie R. Tershy; Karl J. Campbell; Erika S. Zavaleta
6.1 million. An eradication ethic combined with a suite of techniques and technologies made eradication possible. A field-based Geographic Information System facilitated an adaptive management strategy, including adjustment and integration of hunting methods. Specialized ground hunting techniques with dogs removed most of the goat population. Aerial hunting by helicopter and Judas goat techniques were also critical. Mata Hari goats, sterilized female Judas goats induced into a long-term estrus, removed males from the remnant feral population at an elevated rate, which likely decreased the length and cost of the eradication campaign. The last 1,000 goats cost US
PLOS ONE | 2011
Victor Carrion; C. Josh Donlan; Karl J. Campbell; Christian Lavoie; Felipe Cruz
2.0 million to remove; we spent an additional US
Biodiversity and Conservation | 2007
Victor Carrion; C. Josh Donlan; Karl J. Campbell; Christian Lavoie; Felipe Cruz
467,064 on monitoring to confirm eradication. Aerial hunting is cost-effective even in countries where labor is inexpensive. Local sociopolitical environments and best practices emerging from large-scale, fast-paced eradications should drive future strategies. For nonnative ungulate eradications, island size is arguably no longer the limiting factor. Future challenges will involve removing invasive mammals from large inhabited islands while increasing cost-effectiveness of removing low-density populations and confirming eradication. Those challenges will require leveraging technology and applying theory from other disciplines, along with conservation practitioners working alongside sociologists and educators.
Science | 2011
Daniel Simberloff; Piero Genovesi; Petr Pyšek; Karl J. Campbell
Introduced mammals are a major driver of extinction and ecosystem change, particularly on islands. Feral goats Capra hircus have been introduced to numer- ous islands worldwide and have had wholesale impacts on ecosystems. Techniques are now available, however, to eradicate goat populations from islands, providing a powerful conservation tool. Goats were removed from Pinta Island, Galapagos, Ecuador after a 30-year eradi- cation campaign, the largest removal of an insular goat population using ground-based methods. Over 41,000 goats were removed during the initial hunting effort (1971-82). In the following decade the island was twice wrongly declared free of goats. During this period, the island was visited irregularly but no monitoring programme was implemented. A revised campaign over 1999-2003, which included improved hunting tech- niques and monitoring, removed the final goats from the island. The use of Judas goats was critical in locating the remaining goats and as a tool to confirm eradication. A systematic monitoring programme is critical for confirm- ing eradication and preventing future reintroductions. An earlier monitoring programme would probably have resulted in earlier eradication and significant financial savings. Given limited resources, island conser- vation programmes elsewhere should strive to increase eradication efficiency and learn from past campaigns.
Wildlife Research | 2005
Karl J. Campbell; Greg Baxter; P. J. Murray; Bruce E. Coblentz; C. Josh Donlan; Victor Carrion G.
A great part of the Earths biodiversity occurs on islands, to which humans have brought a legion of invasive species that have caused population declines and even extinctions. The domestic cat is one of the most damaging species introduced to islands, being a primary extinction driver for at least 33 insular endemic vertebrates. Here, we examine the role of feral cats in the context of the island biodiversity crisis, by combining data from reviews of trophic studies, species conservation status reports, and eradication campaigns. The integration of these reviews permits us to identify priority islands where feral cat eradications are likely to be feasible and where cats are predicted to cause the next vertebrate extinctions. Funding agencies and global conservation organizations can use these results to prioritize scarce conservation funds, and national and regional natural resource management agencies can rank their islands in need of feral cat eradication within a global context.
Biological Invasions | 2015
Nick D. Holmes; Karl J. Campbell; Bradford S. Keitt; R. Griffiths; J. Beek; C. J. Donlan; K. G. Broome
Invasive alien mammals are the major driver of biodiversity loss and ecosystem degradation on islands. Over the past three decades, invasive mammal eradication from islands has become one of societys most powerful tools for preventing extinction of insular endemics and restoring insular ecosystems. As practitioners tackle larger islands for restoration, three factors will heavily influence success and outcomes: the degree of local support, the ability to mitigate for non-target impacts, and the ability to eradicate non-native species more cost-effectively. Investments in removing invasive species, however, must be weighed against the risk of reintroduction. One way to reduce reintroduction risks is to eradicate the target invasive species from an entire archipelago, and thus eliminate readily available sources. We illustrate the costs and benefits of this approach with the efforts to remove invasive goats from the Galápagos Islands. Project Isabela, the worlds largest island restoration effort to date, removed >140,000 goats from >500,000 ha for a cost of US