Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl J. Niklas is active.

Publication


Featured researches published by Karl J. Niklas.


New Phytologist | 2012

Biomass allocation to leaves, stems and roots: meta analyses of interspecific variation and environmental control

Hendrik Poorter; Karl J. Niklas; Peter B. Reich; Jacek Oleksyn; Pieter Poot; Liesje Mommer

We quantified the biomass allocation patterns to leaves, stems and roots in vegetative plants, and how this is influenced by the growth environment, plant size, evolutionary history and competition. Dose-response curves of allocation were constructed by means of a meta-analysis from a wide array of experimental data. They show that the fraction of whole-plant mass represented by leaves (LMF) increases most strongly with nutrients and decreases most strongly with light. Correction for size-induced allocation patterns diminishes the LMF-response to light, but makes the effect of temperature on LMF more apparent. There is a clear phylogenetic effect on allocation, as eudicots invest relatively more than monocots in leaves, as do gymnosperms compared with woody angiosperms. Plants grown at high densities show a clear increase in the stem fraction. However, in most comparisons across species groups or environmental factors, the variation in LMF is smaller than the variation in one of the other components of the growth analysis equation: the leaf area : leaf mass ratio (SLA). In competitive situations, the stem mass fraction increases to a smaller extent than the specific stem length (stem length : stem mass). Thus, we conclude that plants generally are less able to adjust allocation than to alter organ morphology.


Nature | 2001

Invariant scaling relations across tree-dominated communities

Brian J. Enquist; Karl J. Niklas

Organizing principles are needed to link organismal, community and ecosystem attributes across spatial and temporal scales. Here we extend allometric theory—how attributes of organisms change with variation in their size—and test its predictions against worldwide data sets for forest communities by quantifying the relationships among tree size–frequency distributions, standing biomass, species number and number of individuals per unit area. As predicted, except for the highest latitudes, the number of individuals scales as the -2 power of basal stem diameter or as the -3/4 power of above-ground biomass. Also as predicted, this scaling relationship varies little with species diversity, total standing biomass, latitude and geographic sampling area. A simulation model in which individuals allocate biomass to leaf, stem and reproduction, and compete for space and light obtains features identical to those of a community. In tandem with allometric theory, our results indicate that many macroecological features of communities may emerge from a few allometric principles operating at the level of the individual.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Invariant scaling relationships for interspecific plant biomass production rates and body size

Karl J. Niklas; Brian J. Enquist

The allometric relationships for plant annualized biomass production (“growth”) rates, different measures of body size (dry weight and length), and photosynthetic biomass (or pigment concentration) per plant (or cell) are reported for multicellular and unicellular plants representing three algal phyla; aquatic ferns; aquatic and terrestrial herbaceous dicots; and arborescent monocots, dicots, and conifers. Annualized rates of growth G scale as the 3/4-power of body mass M over 20 orders of magnitude of M (i.e., G ∝ M3/4); plant body length L (i.e., cell length or plant height) scales, on average, as the 1/4-power of M over 22 orders of magnitude of M (i.e., L ∝ M1/4); and photosynthetic biomass Mp scales as the 3/4-power of nonphotosynthetic biomass Mn (i.e., Mp ∝ Mn3/4). Because these scaling relationships are indifferent to phylogenetic affiliation and habitat, they have far-reaching ecological and evolutionary implications (e.g., net primary productivity is predicted to be largely insensitive to community species composition or geological age).


Plant Physiology | 2007

A Reevaluation of the Key Factors That Influence Tomato Fruit Softening and Integrity

Montserrat Saladié; Antonio J. Matas; Tal Isaacson; Matthew A. Jenks; S. Mark Goodwin; Karl J. Niklas; Ren Xiaolin; John M. Labavitch; Kenneth A. Shackel; Alisdair R. Fernie; Anna Lytovchenko; Malcolm A. O'Neill; Christopher B. Watkins; Jocelyn K. C. Rose

The softening of fleshy fruits, such as tomato (Solanum lycopersicum), during ripening is generally reported to result principally from disassembly of the primary cell wall and middle lamella. However, unsuccessful attempts to prolong fruit firmness by suppressing the expression of a range of wall-modifying proteins in transgenic tomato fruits do not support such a simple model. ‘Delayed Fruit Deterioration’ (DFD) is a previously unreported tomato cultivar that provides a unique opportunity to assess the contribution of wall metabolism to fruit firmness, since DFD fruits exhibit minimal softening but undergo otherwise normal ripening, unlike all known nonsoftening tomato mutants reported to date. Wall disassembly, reduced intercellular adhesion, and the expression of genes associated with wall degradation were similar in DFD fruit and those of the normally softening ‘Ailsa Craig’. However, ripening DFD fruit showed minimal transpirational water loss and substantially elevated cellular turgor. This allowed an evaluation of the relative contribution and timing of wall disassembly and water loss to fruit softening, which suggested that both processes have a critical influence. Biochemical and biomechanical analyses identified several unusual features of DFD cuticles and the data indicate that, as with wall metabolism, changes in cuticle composition and architecture are an integral and regulated part of the ripening program. A model is proposed in which the cuticle affects the softening of intact tomato fruit both directly, by providing a physical support, and indirectly, by regulating water status.


Biological Reviews | 2004

Plant allometry: is there a grand unifying theory?

Karl J. Niklas

The study of size and its biological consequences – called allometry – has fascinated biologists for centuries. Recent advances in this area of study have stimulated a renewed interest in these scaling phenomena, especially in terms of the search for mechanistic explanations that transcend mere descriptive phenomenology. These advances are reviewed in the context of plant biology. Allometric derivations are presented that predict how annual growth in total body biomass is partitioned to construct new leaf, stem, and root tissues at the level of an individual plant. Derivations are also presented to predict annual reproductive effort and to predict how the biomass of body parts changes as a function of the number of plants per unit area in communities. The predictions emerging from these derivations are then examined empirically by comparing predicted and observed scaling exponents for each relationship using a world‐wide data compendium gathered from the primary literature. These comparisons provide strong statistical support for each of the allometric predictions. This support is taken as evidence that a general unifying allometric theory for plant biology is near at hand. Nevertheless, the validation of this theory requires much additional work and raises a number of procedural and conceptual concerns that must be resolved before a single‘global’theory is accepted.


Botanical Review | 1985

The aerodynamics of wind pollination

Karl J. Niklas

A number of morphologic features have evolved in evolutionarily divergent plant groups that appear to increase the efficiency of wind pollination. Among these features are the appearance of low density pollen grains, female ovulate organs that direct air currents carrying pollen toward stigmas or micropyles, and population structures with a high density of con-specifics. This paper reviews the aerodynamic theory, and the experimental and field data that are relevant to an understanding of the adaptive significance of these and other features of anemophily. Emphasis is placed on the mathematical description of the behavior of airflow patterns around ovulate organs. The efficiency of wind pollination is shown to be dictated principally by the vectoral properties of air currents created by and around ovulate organs and the physical properties of pollen that dictate their behavior as airborne particles.AbstraktEine Anzahl von morphologischen Kennzeichen, die Effizienz der Windpollination zu steigern scheinen, haben sich in evolutionär ausenandergehonden Pflanzengruppen entwickelt. Zu diesen Kennzeichen gehören die Erscheinung von Pollenkörnen von geringer Dichte, weiblichen Organen die pollentragende Luftströmungen zu den Stigmas oder Micropylen dirigieren, und Bevölkerungsstrukturen mit grosser Dichte von Con-specifics. Diese Abhandlung gibt einen überblick der aerodynamischen Theorie und der experimentelle Werte, die für das Verständnis der adaptiven Signifikanz dieser und anderer Kennzeichen der Windpollination von Bedeutung sind. Betont wird die mathematische Beschreibung des Verhaltens der Luftströmungen um die weiblichen Organe. Es wird gezeigt, dass die Effizienz der Windpollination hauptsächlich durch die vectoralen Eigenschaften der Luftströmungen die durch und um die weiblichen Organe entstehen, bestimmt wird, und durch die physischen Eigenschaften des Pollens, die sein Verhalten als luftgetragene Partikel diktieren.


Naturwissenschaften | 2004

The modern theory of biological evolution: an expanded synthesis

Ulrich Kutschera; Karl J. Niklas

In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin’s Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin’s perspective. Weismann’s neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin’s dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the “modern synthesis” is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life.


Functional Plant Biology | 2011

The evolution and functional significance of leaf shape in the angiosperms

Adrienne B. Nicotra; Andrea Leigh; C. Kevin Boyce; Cynthia S. Jones; Karl J. Niklas; Dana L. Royer; Hirokazu Tsukaya

Angiosperm leaves manifest a remarkable diversity of shapes that range from developmental sequences within a shoot and within crown response to microenvironment to variation among species within and between communities and among orders or families. It is generally assumed that because photosynthetic leaves are critical to plant growth and survival, variation in their shape reflects natural selection operating on function. Several non-mutually exclusive theories have been proposed to explain leaf shape diversity. These include: thermoregulation of leaves especially in arid and hot environments, hydraulic constraints, patterns of leaf expansion in deciduous species, biomechanical constraints, adaptations to avoid herbivory, adaptations to optimise light interception and even that leaf shape variation is a response to selection on flower form. However, the relative importance, or likelihood, of each of these factors is unclear. Here we review the evolutionary context of leaf shape diversification, discuss the proximal mechanisms that generate the diversity in extant systems, and consider the evidence for each the above hypotheses in the context of the functional significance of leaf shape. The synthesis of these broad ranging areas helps to identify points of conceptual convergence for ongoing discussion and integrated directions for future research.


The American Naturalist | 2004

Similarity of Mammalian Body Size across the Taxonomic Hierarchy and across Space and Time

Felisa A. Smith; James H. Brown; John P. Haskell; S. Kathleen Lyons; John Alroy; Eric L. Charnov; Tamar Dayan; Brian J. Enquist; S. K. Morgan Ernest; Elizabeth A. Hadly; Kate E. Jones; Dawn M. Kaufman; Pablo A. Marquet; Brian A. Maurer; Karl J. Niklas; Warren P. Porter; Bruce H. Tiffney; Michael R. Willig

Although it is commonly assumed that closely related animals are similar in body size, the degree of similarity has not been examined across the taxonomic hierarchy. Moreover, little is known about the variation or consistency of body size patterns across geographic space or evolutionary time. Here, we draw from a data set of terrestrial, nonvolant mammals to quantify and compare patterns across the body size spectrum, the taxonomic hierarchy, continental space, and evolutionary time. We employ a variety of statistical techniques including “sib‐sib” regression, phylogenetic autocorrelation, and nested ANOVA. We find an extremely high resemblance (heritability) of size among congeneric species for mammals over ∼18 g; the result is consistent across the size spectrum. However, there is no significant relationship among the body sizes of congeneric species for mammals under ∼18 g. We suspect that life‐history and ecological parameters are so tightly constrained by allometry at diminutive size that animals can only adapt to novel ecological conditions by modifying body size. The overall distributions of size for each continental fauna and for the most diverse orders are quantitatively similar for North America, South America, and Africa, despite virtually no overlap in species composition. Differences in ordinal composition appear to account for quantitative differences between continents. For most mammalian orders, body size is highly conserved, although there is extensive overlap at all levels of the taxonomic hierarchy. The body size distribution for terrestrial mammals apparently was established early in the Tertiary, and it has remained remarkably constant over the past 50 Ma and across the major continents. Lineages have diversified in size to exploit environmental opportunities but only within limits set by allometric, ecological, and evolutionary constraints.


The American Naturalist | 2002

On the Vegetative Biomass Partitioning of Seed Plant Leaves, Stems, and Roots

Karl J. Niklas; Brian J. Enquist

A central goal of comparative life‐history theory is to derive the general rules governing growth, metabolic allocation, and biomass partitioning. Here, we use allometric theory to predict the relationships among annual leaf, stem, and root growth rates (GL, GS, and GR, respectively) across a broad spectrum of seed plant species. Our model predicts isometric scaling relationships among all three organ growth rates: \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape

Collaboration


Dive into the Karl J. Niklas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youhong Peng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge