Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl J. Oparka is active.

Publication


Featured researches published by Karl J. Oparka.


The Plant Cell | 1999

Sieve elements and companion cells-traffic control centers of the phloem

Karl J. Oparka; Robert Turgeon

Of all the intricate cell–cell interactions in nature, those between the sieve element (SE) and its companion cell (CC) rank among the most complex and mysterious. Mature SEs are enucleate and retain only a highly degenerate cytoplasm, yet they can remain viable and functional for decades ([


The Plant Cell | 1997

Phloem Unloading in Sink Leaves of Nicotiana benthamiana: Comparison of a Fluorescent Solute with a Fluorescent Virus.

Alison G. Roberts; Simon Santa Cruz; I. M. Roberts; Denton A. M. Prior; Robert Turgeon; Karl J. Oparka

Using noninvasive imaging techniques, we compared phloem unloading of the membrane-impermeant, fluorescent solute carboxyfluorescein (CF) with that of potato virus X expressing the gene for the green fluorescent protein. Although systemic virus transport took considerably longer to occur than did CF transport, unloading of both solute and virus occurred predominantly from the class III vein network, a highly branched veinal system found between class II veins. The minor veins (classes IV and V) played no role in solute or virus import but were shown to be functional in xylem transport at the time of import by labeling with Texas Red dextran. After virus exit from the class III phloem, the minor veins eventually became infected by cell-to-cell virus movement from the mesophyll. During the sink/source transition, phloem unloading of CF was inhibited from class III veins before the cessation of phloem import through them, suggesting a symplastic isolation of the phloem in class III veins before its involvement in export. The progression of the sink/source transition for carbon was unaffected by the presence of the virus in the sink leaf. However, the virus was unable to cross the sink/source boundary for carbon that was present at the time of viral entry, suggesting a limited capacity for cell-to-cell virus movement into the apical (source) region of the leaf. A functional model of the sink/source transition in Nicotiana benthamiana is presented. This model provides a framework for the analysis of solute and virus movement in leaves.


The Plant Cell | 2001

Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading

Roberto Viola; Alison G. Roberts; Sophie Haupt; Silvia Gazzani; Robert D. Hancock; Nelson Marmiroli; Gordon C. Machray; Karl J. Oparka

Phloem unloading was studied in potato plants in real time during the early stages of tuberization using carboxyfluorescein (CF) as a phloem-mobile tracer, and the unloading pattern was compared with autoradiography of tubers that had transported 14C assimilates. In stolons undergoing extension growth, apoplastic phloem unloading predominated. However, during the first visible signs of tuberization, a transition occurred from apoplastic to symplastic transport, and both CF and 14C assimilates subsequently followed identical patterns of phloem unloading. It is suggested that the switch to symplastic sucrose unloading may be responsible for the upregulation of several genes involved in sucrose metabolism. A detailed analysis of sugar levels and 14C sugar partitioning in tuberizing stolons revealed a distinct difference between the apical region of the tuber and the subapical region. Analysis of invertase activity in nontuberizing and tuberizing stolons revealed a marked decline in soluble invertase in the subapical region of swelling stolons, consistent with the switch from apoplastic to symplastic unloading. However, cell wall–bound invertase activity remained high in the apical 1 to 2 mm of tuberizing stolons. Histochemical analysis of potato lines transformed with the promoter of an apoplastic invertase gene (invGE) linked to a reporter gene also revealed discrete gene expression in the apical bud region. Evidence is presented that the apical and lateral tuber buds function as isolated domains with respect to sucrose unloading and metabolism.


The Plant Cell | 1998

Cell-to-Cell and Phloem-Mediated Transport of Potato Virus X: The Role of Virions

Simon Santa Cruz; Alison G. Roberts; Denton A. M. Prior; Sean Chapman; Karl J. Oparka

Movement-deficient potato virus X (PVX) mutants tagged with the green fluorescent protein were used to investigate the role of the coat protein (CP) and triple gene block (TGB) proteins in virus movement. Mutants lacking either a functional CP or TGB were restricted to single epidermal cells. Microinjection of dextran probes into cells infected with the mutants showed that an increase in the plasmodesmal size exclusion limit was dependent on one or more of the TGB proteins and was independent of CP. Fluorescently labeled CP that was injected into epidermal cells was confined to the injected cells, showing that the CP lacks an intrinsic transport function. In additional experiments, transgenic plants expressing the PVX CP were used as rootstocks and grafted with nontransformed scions. Inoculation of the PVX CP mutants to the transgenic rootstocks resulted in cell-to-cell and systemic movement within the transgenic tissue. Translocation of the CP mutants into sink leaves of the nontransgenic scions was also observed, but infection was restricted to cells close to major veins. These results indicate that the PVX CP is transported through the phloem, unloads into the vascular tissue, and subsequently is transported between cells during the course of infection. Evidence is presented that PVX uses a novel strategy for cell-to-cell movement involving the transport of filamentous virions through plasmodesmata.


The Plant Cell | 2003

High-Throughput Viral Expression of cDNA-Green Fluorescent Protein Fusions Reveals Novel Subcellular Addresses and Identifies Unique Proteins That Interact with Plasmodesmata

Nieves Medina Escobar; Sophie Haupt; Graham Thow; Petra C. Boevink; Sean Chapman; Karl J. Oparka

A strategy was developed for the high-throughput localization of unknown expressed proteins in Nicotiana benthamiana. Libraries of random, partial cDNAs fused to the 5′ or 3′ end of the gene for green fluorescent protein (GFP) were expressed in planta using a vector based on Tobacco mosaic virus. Viral populations were screened en masse on inoculated leaves using a confocal microscope fitted with water-dipping lenses. Each viral infection site expressed a unique cDNA-GFP fusion, allowing several hundred cDNA-GFP fusions to be screened in a single day. More than half of the members of the library carrying cDNA fusions to the 5′ end of gfp that expressed fluorescent fusion proteins displayed discrete, noncytosolic, subcellular localizations. Nucleotide sequence determination of recovered cDNA sequences and subsequent sequence searches showed that fusions of GFP to proteins that had a predicted subcellular “address” became localized with high fidelity. In a subsequent screen of >20,000 infection foci, 12 fusion proteins were identified that localized to plasmodesmata, a subcellular structure for which very few protein components have been identified. This virus-based system represents a method for high-throughput functional genomic study of plant cell organelles and allows the identification of unique proteins that associate with specific subcompartments within organelles.


The Plant Cell | 2005

Two Plant–Viral Movement Proteins Traffic in the Endocytic Recycling Pathway

Sophie Haupt; Graham H. Cowan; Angelika Ziegler; Alison G. Roberts; Karl J. Oparka; Lesley Torrance

Many plant viruses exploit a conserved group of proteins known as the triple gene block (TGB) for cell-to-cell movement. Here, we investigated the interaction of two TGB proteins (TGB2 and TGB3) of Potato mop-top virus (PMTV), with components of the secretory and endocytic pathways when expressed as N-terminal fusions to green fluorescent protein or monomeric red fluorescent protein (mRFP). Our studies revealed that fluorophore-labeled TGB2 and TGB3 showed an early association with the endoplasmic reticulum (ER) and colocalized in motile granules that used the ER-actin network for intracellular movement. Both proteins increased the size exclusion limit of plasmodesmata, and TGB3 accumulated at plasmodesmata in the absence of TGB2. TGB3 contains a putative Tyr-based sorting motif, mutations in which abolished ER localization and plasmodesmatal targeting. Later in the expression cycle, both fusion proteins were incorporated into vesicular structures. TGB2 associated with these structures on its own, but TGB3 could not be incorporated into the vesicles in the absence of TGB2. Moreover, in addition to localization to the ER and motile granules, mRFP-TGB3 was incorporated into vesicles when expressed in PMTV-infected epidermal cells, indicating recruitment by virus-expressed TGB2. The TGB fusion protein-containing vesicles were labeled with FM4-64, a marker for plasma membrane internalization and components of the endocytic pathway. TGB2 also colocalized in vesicles with Ara7, a Rab5 ortholog that marks the early endosome. Protein interaction analysis revealed that recombinant TGB2 interacted with a tobacco protein belonging to the highly conserved RME-8 family of J-domain chaperones, shown to be essential for endocytic trafficking in Caenorhabditis elegans and Drosophila melanogaster. Collectively, the data indicate the involvement of the endocytic pathway in viral intracellular movement, the implications of which are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection

Sean Chapman; Christine Faulkner; Eirini Kaiserli; Carlos García-Mata; Eugene I. Savenkov; Alison G. Roberts; Karl J. Oparka; John M. Christie

Fluorescent proteins (FPs) based on green fluorescent protein (GFP) are widely used throughout cell biology to study protein dynamics, and have extensive use as reporters of virus infection and spread. However, FP-tagging of viruses is limited by the constraints of viral genome size resulting in FP loss through recombination events. To overcome this, we have engineered a smaller (≈10 kDa) flavin-based alternative to GFP (≈25 kDa) derived from the light, oxygen or voltage-sensing (LOV) domain of the plant blue light receptor, phototropin. Molecular evolution and Tobacco mosaic virus (TMV)-based expression screening produced LOV variants with improved fluorescence and photostability in planta. One variant in particular, designated iLOV, possessed photophysical properties that made it ideally suited as a reporter of subcellular protein localization in both plant and mammalian cells. Moreover, iLOV fluorescence was found to recover spontaneously after photobleaching and displayed an intrinsic photochemistry conferring advantages over GFP-based FPs. When expressed either as a cytosolic protein or as a viral protein fusion, iLOV functioned as a superior reporter to GFP for monitoring local and systemic infections of plant RNA viruses. iLOV, therefore, offers greater utility in FP-tagging of viral gene products and represents a viable alternative where functional protein expression is limited by steric constraints or genome size.


The Plant Cell | 2002

Functional Analysis of a DNA-Shuffled Movement Protein Reveals That Microtubules Are Dispensable for the Cell-to-Cell Movement of Tobacco mosaic virus

Trudi Gillespie; Petra C. Boevink; Sophie Haupt; Alison G. Roberts; Rachel L. Toth; Tracy A. Valentine; Sean Chapman; Karl J. Oparka

Microtubules interact strongly with the viral movement protein (MP) of Tobacco mosaic virus (TMV) and are thought to transport the viral genome between plant cells. We describe a functionally enhanced DNA-shuffled movement protein (MPR3) that remained bound to the vertices of the cortical endoplasmic reticulum, showing limited affinity for microtubules. A single amino acid change was shown to confer the MPR3 phenotype. Disruption of the microtubule cytoskeleton in situ with pharmacological agents, or by silencing of the α-tubulin gene, had no significant effect on the spread of TMV vectors expressing wild-type MP (MPWT) and did not prevent the accumulation of MPWT in plasmodesmata. Thus, cell-to-cell trafficking of TMV can occur independently of microtubules. The MPR3 phenotype was reproduced when infection sites expressing MPWT were treated with a specific proteasome inhibitor, indicating that the degradation of MPR3 is impaired. We suggest that the improved viral transport functions of MPR3 arise from evasion of a host degradation pathway.


The Plant Cell | 1998

The Movement Protein of Cucumber Mosaic Virus Traffics into Sieve Elements in Minor Veins of Nicotiana clevelandii

Leila M. Blackman; Petra C. Boevink; Simon Santa Cruz; Peter Palukaitis; Karl J. Oparka

The location of the 3a movement protein (MP) of cucumber mosaic virus (CMV) was studied by quantitative immunogold labeling of the wild-type 3a MP in leaves of Nicotiana clevelandii infected by CMV as well as by using a 3a–green fluorescent protein (GFP) fusion expressed from a potato virus X (PVX) vector. Whether expressed from CMV or PVX, the 3a MP targeted plasmodesmata and accumulated in the central cavity of the pore. Within minor veins, the most extensively labeled plasmodesmata were those connecting sieve elements and companion cells. In addition to targeting plasmodesmata, the 3a MP accumulated in the parietal layer of mature sieve elements. Confocal imaging of cells expressing the 3a–GFP fusion protein showed that the 3a MP assembled into elaborate fibrillar formations in the sieve element parietal layer. The ability of 3a–GFP, expressed from PVX rather than CMV, to enter sieve elements demonstrates that neither the CMV RNA nor the CMV coat protein is required for trafficking of the 3a MP into sieve elements. CMV virions were not detected in plasmodesmata from CMV-infected tissue, although large CMV aggregates were often found in the parietal layer of sieve elements and were usually surrounded by 3a MP. These data suggest that CMV traffics into minor vein sieve elements as a ribonucleoprotein complex that contains the viral RNA, coat protein, and 3a MP, with subsequent viral assembly occurring in the sieve element parietal layer.


Traffic | 2007

Targeting of TMV movement protein to plasmodesmata requires the actin/ER network: evidence from FRAP

Kathryn M. Wright; Nicola T. Wood; Alison G. Roberts; Sean Chapman; Petra C. Boevink; Katrin MacKenzie; Karl J. Oparka

Fluorescence recovery after photobleaching (FRAP) was used to study the mechanism by which fluorescent‐protein‐tagged movement protein (MP) of tobacco mosaic virus (TMV) is targeted to plasmodesmata (PD). The data show that fluorescence recovery in PD at the leading edge of an infection requires elements of the cortical actin/endoplasmic reticulum (ER) network and can occur in the absence of an intact microtubule (MT) cytoskeleton. Inhibitors of the actin cytoskeleton (latrunculin and cytochalasin) significantly inhibited MP targeting, while MT inhibitors (colchicine and oryzalin) did not. Application of sodium azide to infected cells implicated an active component of MP transfer to PD. Treatment of cells with Brefeldin A (BFA) at a concentration that caused reabsorption of the Golgi bodies into the ER (precluding secretion of viral MP) had no effect on MP targeting, while disruption of the cortical ER with higher concentrations of BFA caused significant inhibition. Our results support a model of TMV MP function in which targeting of MP to PD during infection is mediated by the actin/ER network.

Collaboration


Dive into the Karl J. Oparka's collaboration.

Top Co-Authors

Avatar

Alison G. Roberts

Scottish Crop Research Institute

View shared research outputs
Top Co-Authors

Avatar

Denton A. M. Prior

Scottish Crop Research Institute

View shared research outputs
Top Co-Authors

Avatar

Simon Santa Cruz

Scottish Crop Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Hawes

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar

Jens Tilsner

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. M. Roberts

Scottish Crop Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge