Karl Klisch
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karl Klisch.
Reproduction | 2006
Karl Klisch; Alois Boos; M. Friedrich; K. Herzog; M. Feldmann; Noelita Melo de Sousa; Jean-François Beckers; Rudolf Leiser; Gerhard Schuler
Binucleate trophoblast giant cells (BNC) in the bovine placenta produce glycoproteins, which are delivered into the mother after fusion of BNC with uterine epithelial cells. During most time of pregnancy, BNC produce pregnancy-associated glycoproteins (PAGs) and prolactin-related protein-I (PRP-I) with asparagine-linked lactosamine-type glycans terminating with N-acetyl-galactosamine. We show by lectin histochemistry that terminal N-acetyl-galactosamine (detected by Dolichos biflorus agglutinin, DBA) in placentomal BNC is greatly reduced prior to parturition, while lactosamine-type N-glycans (detected by Phaseolus vulgaris leucoagglutinin, PHA-L) remain unaltered. The change in DBA-staining showed no statistically significant differences between placentomes of cows with and without retention of fetal membranes. Western blots revealed that, at parturition the apparent molecular mass of PAGs and PRP-I is 1-2 kDa lower than in late pregnancy. These changes are due to alterations of asparagine-linked glycans, since the molecular weight of the peptide backbones after enzymatical release of asparagine-linked glycans is identical at late pregnancy and parturition. Lectin western blots showed a reduction of terminal N-acetyl-galactosamine on PAGs at parturition. A lectin sandwich-ELISAwas used to differentiate DBA- and PHA-L-binding PAGs in sera of pregnant and non-pregnant cows. The values for DBA-binding PAGs at parturition were not significantly different from non-pregnancy, while the values for PHA-L-binding PAGs were significantly higher at parturition. The peripartal changes of PAG- and PRP-I-glycosylation could alter functional properties of these proteins and might therefore be considered for functional studies. The differentiation of PAG glycoforms in maternal serum could be valuable for a further optimization of PAG-based pregnancy diagnosis in cattle.
Reproduction | 2011
Karl Klisch; David A. Contreras; Xiaoni Sun; Ralph Brehm; Martin Bergmann; Ramiro Alberio
Spermatogonia are a potential source of adult pluripotent stem cells and can be used for testis germ cell transplantation. Markers for the isolation of these cells are of great importance for biomedical applications. Primordial germ cells and prepubertal spermatogonia in many species can be identified by their binding of Dolichos biflorus agglutinin (DBA). This lectin binds to two different types of glycans, which are α-linked N-acetylgalactosamine (GalNac) and β-linked GalNac, if this is part of the Sda or GM2 glycotopes. We used the MAB CT1, which is specific for the trisaccharides motif NeuAcα2-3(GalNAcβ1-4)Galβ1-, which is common to both Sda and GM2 glycotopes, to further define the glycosylation of DBA binding germ cells. In porcine embryos, CT1 bound to migratory germ cells and gonocytes. CT1/DBA double staining showed that the mesonephros was CT1 negative but contained DBA-positive cells. Gonocytes in the female gonad became CT1 negative, while male gonocytes remained CT1 positive. In immunohistological double staining of cattle, pig, horse and llama testis, DBA and CT1 staining was generally colocalised in a subpopulation of spermatogonia. These spermatogonia were mainly single, sometimes paired or formed chains of up to four cells. Our data show that the Sda/GM2 glycotope is present in developing germ cells and spermatogonia in several species. Owing to the narrower specificity of the CT1 antibody, compared with DBA, the former is likely to be a useful tool for labelling and isolation of these cells.
Research in Veterinary Science | 2008
Olimpia Barbato; Noelita Melo de Sousa; Karl Klisch; E. Clerget; A. Debenedetti; Vittoria Lucia Barile; Alessandro Malfatti; Jean-François Beckers
The present study describes the isolation and characterization of new pregnancy-associated glycoprotein molecules (PAG) from midpregnancy and late-pregnancy placentas in the water buffalo (Bubalus bubalis). After extraction, the homogenates are subjected to acid and ammonium sulfate precipitations followed by DEAE chromatography. Subsequently, the water buffalo PAG (wbPAG) from these solutions are enriched by Vicia villosa agarose (VVA) affinity chromatography. As determined by western blotting with anti-PAG sera, the apparent molecular masses of the immunoreactive bands from the VVA peaks range from 59.5 to 75.8kDa and from 57.8 to 73.3kDa in the midpregnancy and late-pregnancy placentas, respectively. Amino-terminal microsequencing of the immunoreactive proteins has allowed the identification of three distinct wbPAG sequences, which have been deposited in the SwissProt database: RGSXLTIHPLRNIRDFFYVG (acc. no. P85048), RGSXLTILPLRNIID (acc. no. P85049), and RGSXLTHLPLRNI (acc. no. P85050). Their comparison to previously identified proteins has shown that two of them are new because they have not been described before. Our results confirm the suitability of VVA chromatography for the enrichment of the multiple PAG molecules expressed in buffalo placenta.
PeerJ | 2014
Agata Witkowska; Aziza Alibhai; Chloe Hughes; Jennifer Price; Karl Klisch; Craig J. Sturrock; Catrin S. Rutland
The domestic guinea pig, Cavia aperea f. porcellus, belongs to the Caviidae family of rodents. It is an important species as a pet, a source of food and in medical research. Adult weight is achieved at 8–12 months and life expectancy is ∼5–6 years. Our aim was to map bone local thickness, structure and dimensions across developmental stages in the normal animal. Guinea pigs (n = 23) that had died of natural causes were collected and the bones manually extracted and cleaned. Institutional ethical permission was given under the UK Home Office guidelines and the Veterinary Surgeons Act. X-ray Micro Computed Tomography (microCT) was undertaken on the left and right scapula, humerus and femur from each animal to ascertain bone local thickness. Images were also used to undertake manual and automated bone measurements, volumes and surface areas, identify and describe nutrient, supratrochlear and supracondylar foramina. Statistical analysis between groups was carried out using ANOVA with post-hoc testing. Our data mapped a number of dimensions, and mean and maximum bone thickness of the scapula, humerus and femur in guinea pigs aged 0–1 month, 1–3 months, 3–6 months, 6 months–1 year and 1–4 years. Bone dimensions, growth rates and local bone thicknesses differed between ages and between the scapula, humerus and femur. The microCT and imaging software technology showed very distinct differences between the relative local bone thickness across the structure of the bones. Only one bone showed a singular nutrient foramen, every other bone had between 2 and 5, and every nutrient canal ran in an oblique direction. In contrast to other species, a supratrochlear foramen was observed in every humerus whereas the supracondylar foramen was always absent. Our data showed the bone local thickness, bone structure and measurements of guinea pig bones from birth to 4 years old. Importantly it showed that bone development continued after 1 year, the point at which most guinea pigs have reached full weight. This study is the first to show the high abundance (100% in this study) of the supratrochlear foramen within the guinea pig humerus and the complete absence of a supracondylar foramen, which is different to many other species and may also affect potential fracture points and frequencies. Understanding bone morphology and growth is essential in not only understanding the requirements of the healthy guinea pig, but also necessary in order to investigate disease states.
Cells Tissues Organs | 2018
Jeannette Attiger; Alois Boos; Karl Klisch
Binucleate trophoblast giant cells (TGCs) are one characteristic feature of the ruminant placenta. In cows, the frequency of TGCs remains constant for most of the duration of pregnancy. As TGCs are depleted by their fusion with uterine epithelial cells, they need to be constantly formed. It is still unclear whether they develop from stem cells within the trophectoderm or whether they can arise from any uninucleate trophoblast cell (UTC). Within the latter, generally accepted theory, a basally located uninucleate cell (BUC) without contact to the feto-maternal interface would represent a transient cell between a UTC and a TGC. So far, no evidence for the existence of such transient cells or for the presence of stem cells has been shown. The aim of the present study is to morphologically characterize the early stages of TGC development. Placentomal tissue of 6 pregnant cows from different gestational stages (gestational days 51–214) was examined for BUCs, UTCs, and TGCs either in serial sections (light and transmission electron microscopy, TEM, n = 3), in single sections (TEM, n = 2), or by serial block face-scanning electron microscopy (n = 1). These investigations revealed the occurrence of BUCs, as well as young TGCs showing contact with the basement membrane (BM), but without apical contact to the feto-maternal interface. The study morphologically defines these 2 cell types as early stages of TGC development and shows that binucleation of TGCs can precede detachment from the BM.
Cells Tissues Organs | 2017
Karl Klisch; Elisabeth M. Schraner; Alois Boos
Binucleate trophoblast giant cells (BNC) are the characteristic feature of the ruminant placenta. During their development, BNC pass through 2 acytokinetic mitoses and become binucleate with 2 tetraploid nuclei. In this study, we investigate the number and location of centrosomes in bovine BNC. Centrosomes typically consist of 2 centrioles surrounded by electron-dense pericentriolar material. Duplication of centrosomes is tightly linked to the cell cycle, which ensures that the number of centrosomes remains constant in proliferating diploid cells. Alterations of the cell cycle, which affect the number of chromosome sets, also affect the number of centrosomes. In this study, we use placentomal tissue from pregnant cows (gestational days 80-230) for immunohistochemical staining of γ-tubulin (n = 3) and transmission electron microscopy (n = 3). We show that mature BNC have 4 centrosomes with 8 centrioles, clustered in the angle between the 2 cell nuclei. During the second acytokinetic mitosis, the centrosomes must be clustered to form the poles of a bipolar spindle. In rare cases, centrosome clustering fails and tripolar mitosis leads to the formation of trinucleate “BNC”. Generally, centrosome clustering occurs in polyploid tumor cells, which have an increased number of centrioles, but it is absent in proliferating diploid cells. Thus, inhibition of centrosome clustering in tumor cells is a novel promising strategy for cancer treatment. BNC are a cell population in which centrosome clustering occurs as part of the normal life history. Thus, they might be a good model for the study of the molecular mechanisms of centrosome clustering.
Reproduction (Cambridge, England). Abstract Series | 2006
Olimpia Barbato; Noelita Melo de Sousa; Karl Klisch; E. Clerget; A. Debenedetti; Vittoria Lucia Barile; Alessandro Malfatti; Jean-François Beckers
Theriogenology | 2018
Reyhaneh Hooshmandabbasi; Holm Zerbe; Stefan Bauersachs; Noelita Melo de Sousa; Alois Boos; Karl Klisch
Reproduction in Domestic Animals | 2017
R. Hooshmandabbasi; Holm Zerbe; Alois Boos; Karl Klisch
Reproduction in Domestic Animals | 2006
Karl Klisch; K. Herzog; Maren Feldmann; Gerhard Schuler; M. Friedrich; W. Holtz; Noelita Melo de Sousa; Jean-François Beckers