Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl Kochanowski is active.

Publication


Featured researches published by Karl Kochanowski.


Nature Reviews Microbiology | 2014

Coordination of microbial metabolism

Victor Chubukov; Luca Gerosa; Karl Kochanowski; Uwe Sauer

Beyond fuelling cellular activities with building blocks and energy, metabolism also integrates environmental conditions into intracellular signals. The underlying regulatory network is complex and multifaceted: it ranges from slow interactions, such as changing gene expression, to rapid ones, such as the modulation of protein activity via post-translational modification or the allosteric binding of small molecules. In this Review, we outline the coordination of common metabolic tasks, including nutrient uptake, central metabolism, the generation of energy, the supply of amino acids and protein synthesis. Increasingly, a set of key metabolites is recognized to control individual regulatory circuits, which carry out specific functions of information input and regulatory output. Such a modular view of microbial metabolism facilitates an intuitive understanding of the molecular mechanisms that underlie cellular decision making.


Nature Biotechnology | 2016

The quantitative and condition-dependent Escherichia coli proteome

Alexander Schmidt; Karl Kochanowski; Silke Vedelaar; Erik Ahrné; Benjamin Volkmer; Luciano Callipo; Kèvin Knoops; Manuel Bauer; Ruedi Aebersold; Matthias Heinemann

Measuring precise concentrations of proteins can provide insights into biological processes. Here we use efficient protein extraction and sample fractionation, as well as state-of-the-art quantitative mass spectrometry techniques to generate a comprehensive, condition-dependent protein-abundance map for Escherichia coli. We measure cellular protein concentrations for 55% of predicted E. coli genes (>2,300 proteins) under 22 different experimental conditions and identify methylation and N-terminal protein acetylations previously not known to be prevalent in bacteria. We uncover system-wide proteome allocation, expression regulation and post-translational adaptations. These data provide a valuable resource for the systems biology and broader E. coli research communities.


Nature Biotechnology | 2013

Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo

Hannes Link; Karl Kochanowski; Uwe Sauer

Recent data suggest that the majority of proteins bind specific metabolites and that such interactions are relevant to metabolic and gene regulation. However, there are no methods to systematically identify functional allosteric protein-metabolite interactions. Here we present an experimental and computational approach for using dynamic metabolite data to discover allosteric regulation that is relevant in vivo. By switching the culture conditions of Escherichia coli every 30 s between medium containing either pyruvate or 13C-labeled fructose or glucose, we measured the reversal of flux through glycolysis pathways and observed rapid changes in metabolite concentration. We fit these data to a kinetic model of glycolysis and systematically tested the consequences of 126 putative allosteric interactions on metabolite dynamics. We identified allosteric interactions that govern the reversible switch between gluconeogenesis and glycolysis, including one by which pyruvate activates fructose-1,6-bisphosphatase. Thus, from large sets of putative allosteric interactions, our approach can identify the most likely ones and provide hypotheses about their function.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Functioning of a metabolic flux sensor in Escherichia coli

Karl Kochanowski; Benjamin Volkmer; Luca Gerosa; Bart R.B. Haverkorn van Rijsewijk; Alexander Schmidt; Matthias Heinemann

Regulation of metabolic operation in response to extracellular cues is crucial for cells’ survival. Next to the canonical nutrient sensors, which measure the concentration of nutrients, recently intracellular “metabolic flux” was proposed as a novel impetus for metabolic regulation. According to this concept, cells would have molecular systems (“flux sensors”) in place that regulate metabolism as a function of the actually occurring metabolic fluxes. Although this resembles an appealing concept, we have not had any experimental evidence for the existence of flux sensors and also we have not known how these flux sensors would work in detail. Here, we show experimental evidence that supports the hypothesis that Escherichia coli is indeed able to measure its glycolytic flux and uses this signal for metabolic regulation. Combining experiment and theory, we show how this flux-sensing function could emerge from an aggregate of several molecular mechanisms: First, the system of reactions of lower glycolysis and the feedforward activation of fructose-1,6-bisphosphate on pyruvate kinase translate flux information into the concentration of the metabolite fructose-1,6-bisphosphate. The interaction of this “flux-signaling metabolite” with the transcription factor Cra then leads to flux-dependent regulation. By responding to glycolytic flux, rather than to the concentration of individual carbon sources, the cell may minimize sensing and regulatory expenses.


Molecular Systems Biology | 2014

Dissecting specific and global transcriptional regulation of bacterial gene expression.

Luca Gerosa; Karl Kochanowski; Matthias Heinemann; Uwe Sauer

Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional—but often neglected—layer of complexity in gene expression. Here, we develop an experimental‐computational approach to dissect specific and global regulation in the bacterium Escherichia coli. By using fluorescent promoter reporters, we show that global regulation is growth rate dependent not only during steady state but also during dynamic changes in growth rate and can be quantified through two promoter‐specific parameters. By applying our approach to arginine biosynthesis, we obtain a quantitative understanding of both specific and global regulation that allows accurate prediction of the temporal response to simultaneous perturbations in arginine availability and growth rate. We thereby uncover two principles of joint regulation: (i) specific regulation by repression dominates the transcriptional response during metabolic steady states, largely repressing the biosynthesis genes even when biosynthesis is required and (ii) global regulation sets the maximum promoter activity that is exploited during the transition between steady states.


Current Opinion in Biotechnology | 2013

Somewhat in control — the role of transcription in regulating microbial metabolic fluxes

Karl Kochanowski; Uwe Sauer; Victor Chubukov

The most common way for microbes to control their metabolism is by controlling enzyme levels through transcriptional regulation. Yet recent studies have shown that in many cases, perturbations to the transcriptional regulatory network do not result in altered metabolic phenotypes on the level of the flux distribution. We suggest that this may be a consequence of cells protecting their metabolism against stochastic fluctuations in expression as well as enabling a fast response for those fluxes that may need to be changed quickly. Furthermore, it is impossible for a regulatory program to guarantee optimal expression levels in all conditions. Several studies have found examples of demonstrably suboptimal regulation of gene expression, and improvements to the regulatory network have been investigated in laboratory evolution experiments.


Molecular Systems Biology | 2017

Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli

Karl Kochanowski; Luca Gerosa; Simon F Brunner; Dimitris Christodoulou; Yaroslav Nikolaev; Uwe Sauer

Transcription networks consist of hundreds of transcription factors with thousands of often overlapping target genes. While we can reliably measure gene expression changes, we still understand relatively little why expression changes the way it does. How does a coordinated response emerge in such complex networks and how many input signals are necessary to achieve it? Here, we unravel the regulatory program of gene expression in Escherichia coli central carbon metabolism with more than 30 known transcription factors. Using a library of fluorescent transcriptional reporters, we comprehensively quantify the activity of central metabolic promoters in 26 environmental conditions. The expression patterns were dominated by growth rate‐dependent global regulation for most central metabolic promoters in concert with highly condition‐specific activation for only few promoters. Using an approximate mathematical description of promoter activity, we dissect the contribution of global and specific transcriptional regulation. About 70% of the total variance in promoter activity across conditions was explained by global transcriptional regulation. Correlating the remaining specific transcriptional regulation of each promoter with the cells metabolome response across the same conditions identified potential regulatory metabolites. Remarkably, cyclic AMP, fructose‐1,6‐bisphosphate, and fructose‐1‐phosphate alone explained most of the specific transcriptional regulation through their interaction with the two major transcription factors Crp and Cra. Thus, a surprisingly simple regulatory program that relies on global transcriptional regulation and input from few intracellular metabolites appears to be sufficient to coordinate E. coli central metabolism and explain about 90% of the experimentally observed transcription changes in 100 genes.


Cell systems | 2015

Pseudo-transition Analysis Identifies the Key Regulators of Dynamic Metabolic Adaptations from Steady-State Data

Luca Gerosa; Bart R.B. Haverkorn van Rijsewijk; Dimitris Christodoulou; Karl Kochanowski; Thomas S.B. Schmidt; Elad Noor; Uwe Sauer

Hundreds of molecular-level changes within central metabolism allow a cell to adapt to the changing environment. A primary challenge in cell physiology is to identify which of these molecular-level changes are active regulatory events. Here, we introduce pseudo-transition analysis, an approach that uses multiple steady-state observations of (13)C-resolved fluxes, metabolites, and transcripts to infer which regulatory events drive metabolic adaptations following environmental transitions. Pseudo-transition analysis recapitulates known biology and identifies an unexpectedly sparse, transition-dependent regulatory landscape: typically a handful of regulatory events drive adaptation between carbon sources, with transcription mainly regulating TCA cycle flux and reactants regulating EMP pathway flux. We verify these observations using time-resolved measurements of the diauxic shift, demonstrating that some dynamic transitions can be approximated as monotonic shifts between steady-state extremes. Overall, we show that pseudo-transition analysis can explore the vast regulatory landscape of dynamic transitions using relatively few steady-state data, thereby guiding time-consuming, hypothesis-driven molecular validations.


Current Opinion in Microbiology | 2015

Posttranslational regulation of microbial metabolism.

Karl Kochanowski; Uwe Sauer; Elad Noor

Fluxes in microbial metabolism are controlled by various regulatory layers that alter abundance or activity of metabolic enzymes. Recent studies suggest a division of labor between these layers: transcriptional regulation mostly controls the allocation of protein resources, passive flux regulation by enzyme saturation and thermodynamics allows rapid responses at the expense of higher protein cost, and posttranslational regulation is utilized by cells to directly take control of metabolic decisions. We present recent advances in elucidating the role of these regulatory layers, focusing on posttranslational modifications and allosteric interactions. As the systematic mapping of posttranslational regulatory events has now become possible, the next challenge is to identify those regulatory events that are functionally relevant under a given condition.


Biochemistry | 2016

Systematic Identification of Protein–Metabolite Interactions in Complex Metabolite Mixtures by Ligand-Detected Nuclear Magnetic Resonance Spectroscopy

Yaroslav Nikolaev; Karl Kochanowski; Hannes Link; Uwe Sauer; Frédéric H.-T. Allain

Protein-metabolite interactions play a vital role in the regulation of numerous cellular processes. Consequently, identifying such interactions is a key prerequisite for understanding cellular regulation. However, the noncovalent nature of the binding between proteins and metabolites has so far hampered the development of methods for systematically mapping protein-metabolite interactions. The few available, largely mass spectrometry-based, approaches are restricted to specific metabolite classes, such as lipids. In this study, we address this issue and show the potential of ligand-detected nuclear magnetic resonance (NMR) spectroscopy, which is routinely used in drug development, to systematically identify protein-metabolite interactions. As a proof of concept, we selected four well-characterized bacterial and mammalian proteins (AroG, Eno, PfkA, and bovine serum albumin) and identified metabolite binders in complex mixes of up to 33 metabolites. Ligand-detected NMR captured all of the reported protein-metabolite interactions, spanning a full range of physiologically relevant Kd values (low micromolar to low millimolar). We also detected a number of novel interactions, such as promiscuous binding of the negatively charged metabolites citrate, AMP, and ATP, as well as binding of aromatic amino acids to AroG protein. Using in vitro enzyme activity assays, we assessed the functional relevance of these novel interactions in the case of AroG and show that l-tryptophan, l-tyrosine, and l-histidine act as novel inhibitors of AroG activity. Thus, we conclude that ligand-detected NMR is suitable for the systematic identification of functionally relevant protein-metabolite interactions.

Collaboration


Dive into the Karl Kochanowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge