Karl-Martin Vagn Jensen
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karl-Martin Vagn Jensen.
Journal of Economic Entomology | 2005
Michael Kristensen; Kenneth Klingenberg Hansen; Karl-Martin Vagn Jensen
Abstract The toxicity of fipronil and dieldrin was determined in one susceptible laboratory strain and seven insecticide-resistant field-collected strains of Blattella germanica (L). The Zo960302 and Ga021001 strains were 1,270- and 2,030-fold resistant to dieldrin and 15- and 14-fold resistant to fipronil. The Su960304 and Od010803 strains were 15- and 13-fold resistant to dieldrin and two- and four-fold resistant to fipronil. Three strains showed no or a low level of resistance to dieldrin and fipronil. Crosses were performed between the susceptible strain Danish Pest Infestation Laboratory (DPIL)-SUS and the resistant strains Zo960302 and Su960304 and resistance to dieldrin and fipronil were intermediate compared with the susceptible and the resistant strains. Backcrosses to both of the parental strains showed cosegregation of dieldrin and fipronil resistance. The toxicity of dieldrin and fipronil was correlated when compared at LD50, and 93% of the observed variation in LD50 of fipronil can be ascribed to variation among predictions based on the value of LD50 of dieldrin. The frequency of the A302S substitution in the resistance to dieldrin (Rdl) gene in the highly dieldrin- and fipronil-resistant strains Zo960302 and Ga021001 and the moderately resistant Su960304 was 0.97, 1.0, and 0.38, respectively. We consider the connection between the frequency of the Rdl mutation and dieldrin and fipronil resistance a causal connection and not merely a coincidence.
Pest Management Science | 2012
Lise Stengaard Hansen; Peer Hansen; Karl-Martin Vagn Jensen
BACKGROUND Gaseous ozone (O(3)) has potential for control of insects in stored grain. Previous studies have focused on freely exposed insects. Immatures of internal pests (e.g. Sitophilus spp. and most stages of Rhyzopertha dominica F.) are protected within kernels and probably require higher doses and/or longer treatment times for full control. A laboratory study determined the doses of ozone necessary for full control of freely exposed and internal stages of eleven stored-product pest species. Test insects were three species of Sitophilus, R. dominica, Tribolium confusum Jacquelin du Val, T. castaneum Herbst, Plodia interpunctella Hübner, Sitotroga cerealella Olivier, Oryzaephilus surinamensis L., Ephestia kuehniella Zeller and Stegobium paniceum L. Insects were exposed to continuous flows of ozone in doses of 10-135 ppm and exposure times of 5-8 days. Dose-mortality bioassays were conducted on three species of Sitophilus and P. interpunctella. RESULTS Freely exposed stages (with a few exceptions) were controlled with 35 ppm of ozone for 6 days. Full mortality of internal stages within kernels required exposure to 135 ppm for 8 days. CONCLUSION This study confirms that higher doses and/or longer treatment times are necessary for control of internal stages of stored-product pests.
Pest Management Science | 2014
Dorte H. Højland; Karl-Martin Vagn Jensen; Michael Kristensen
BACKGROUND The housefly is a global pest that has developed resistance to most insecticides applied for its control. Resistance has been associated with cytochrome P450 monooxygenases (P450s). The authors compare the expression of six genes possibly associated with insecticide resistance in three unselected strains: a multiresistant strain (791a), a neonicotinoid-resistant strain (766b) and a new field strain (845b). RESULTS CYP4G2 was highly expressed throughout the range of strains and proved to be the one of the most interesting expression profiles of all P450s analysed. CYP6G4 was expressed up to 11-fold higher in 766b than in WHO-SRS. Significant differences between expression of P450 genes between F1 flies from 845b and established laboratory strains were shown. In general, P450 gene expression in 845b was 2-14-fold higher than in the reference strain (P < 0.0101) and 2-23-fold higher than in the multiresistant strain (P < 0.0110). CONCLUSION The newly collected field strain 845b had significantly higher constitutive gene expression than both WHO-SRS and 791a. High constitutive expression of CYP4G2 in houseflies indicates a possible role of this gene in metabolic resistance. There is a strong indication that CYP6G4 is a major insecticide resistance gene involved in neonicotinoid resistance.
Pest Management Science | 2014
Dorte H Højland; Jeffrey G. Scott; Karl-Martin Vagn Jensen; Michael Kristensen
BACKGROUND The housefly, Musca domestica L., is a global pest and has developed resistance to most insecticides applied for its control. The insecticide spinosad plays an important role in housefly control. Females of the Danish housefly strain 791spin are threefold more resistant to spinosad than males in this strain. The factor responsible for spinosad resistance in the strain is unknown, but previous studies suggest a role of cytochrome P450s for detoxification of spinosad. Sex determination in the housefly is controlled by a male-determining factor (M), either located on the Y chromosome or on one of the five autosomes (I to V). RESULTS The authors performed a series of crosses and backcrosses, starting with cross of 791spin and the susceptible reference strain aabys (bearing morphological mutations on each autosome). These flies were evaluated for gender and bioassayed to determine levels of resistance to spinosad. Sex determination in 791spin is due to a male factor on autosome 3. CONCLUSIONS The most likely explanation for the differentiation of spinosad resistance between males and females is a recessive spinosad resistance factor on autosome III.
PLOS ONE | 2014
Dorte H. Højland; Karl-Martin Vagn Jensen; Michael Kristensen
Background Spinosad is important in pest management strategies of multiple insect pests. However, spinosad resistance is emerging in various pest species. Resistance has in some species been associated with alterations of the target-site receptor, but in others P450s seems to be involved. We test the possible importance of nine cytochrome P450 genes in the spinosad-resistant housefly strain 791spin and investigate the influence of spinosad on P450 expression in four other housefly strains. Results Significant differences in P450 expression of the nine P450 genes in the four strains after spinosad treatment were identified in 40% of cases, most of these as induction. The highly expressed CYP4G2 was induced 6.6-fold in the insecticide susceptible WHO-SRS females, but decreased 2-fold in resistant 791spin males. CYP6G4 was constitutively higher expressed in the resistant strain compared to the susceptible strain. Furthermore, CYP6G4 gene expression was increased in susceptible WHO-SRS flies by spinosad while the expression level did not alter significantly in resistant fly strains. Expression of CYP6A1 and male CYP6D3 was constitutively higher in the resistant strain compared to the susceptible. However, in both cases male expression was higher than female expression. Conclusion CYP4G2, CYP6A1, CYP6D3 and CYP6G4 have expressions patterns approaching the expectations of a hypothesized sex specific spinosad resistance gene. CYP4G2 fit requirements of a spinosad resistance gene best, making it the most likely candidate. The overall high expression level of CYP4G2 throughout the strains also indicates importance of this gene. However, the data on 791spin are not conclusive concerning spinosad resistance and small contributions from multiple P450s with different enzymatic capabilities could be speculated to do the job in 791spin. Differential expression of P450s between sexes is more a rule than an exception. Noteworthy differences between spinosad influenced expression of P450 genes between a field population and established laboratory strains were shown.
International Biodeterioration & Biodegradation | 1996
Lise Stengaard Hansen; Karl-Martin Vagn Jensen
Abstract The susceptibility of the egg, larval and adult stages of Anobium punctatum De Geer (Coleoptera: Anobiidae) to heat (46–54°C, 25–30% RH) was investigated. The larval stage was found to be most tolerant to heat. Very short exposure (5 min) of the larvae to temperatures of 52°C and above led to 100% mortality of the larvae. Treatment for 1.5 and 1 h at 47° and 48°C, respectively, led to 100% mortality. At 46°C, longer treatment time (2.5 h) was necessary. Exposure to 45°C for 3.5 h did not lead to immediate death of the larvae. The actual mortality is assumed to be greater than the results actually reported, as most of the larvae had not resumed normal activity at the end of the two-week observation period. The egg and adult stages were more sensitive to heat than the larvae; shorter exposure times were sufficient to obtain 100% mortality.
Metabolomics | 2015
Nanna Hjort Vidkjær; Bernd Wollenweber; René Gislum; Karl-Martin Vagn Jensen; Inge S. Fomsgaard
Weaver ants (genus Oecophylla) are tropical carnivorous ant species living in high numbers in the canopies of trees. The ants excrete copious amounts of fecal matter on leaf surfaces, and these feces may provide nutrients to host trees. This hypothesis is supported by studies of ant-plant interactions involving other ant species that have demonstrated the transfer of nutrients from ants to plants. In this 7-months study, a GC–MS-based metabolomics approach along with an analysis of total nitrogen and carbon levels was used to study metabolic changes in ant-hosting Coffea arabica plants compared with control plants. The results showed elevated levels of total nitrogen, amino acids, fatty acids, caffeine, and secondary metabolites of the phenylpropanoid pathway in leaves from ant-hosting plants. Minor effects were observed for sugars, whereas little or no effect was observed for organic acids, despite the fact that lower levels of total carbon were found in ant-hosting plants. The increased levels of total nitrogen, amino acids, fatty acids and caffeine and the decreased total carbon were consistent with changes observed in plants grown with an increased supply of nitrogen-containing nutrients. The up-regulation of the phenylpropanoid pathway could indicate biotic stress and/or nutrient deficiency. However, because nutrient deficiency was contradicted by the remaining results, this pathway up-regulation was ascribed to biotic stress caused by the physical presence of the weaver ants.
PLOS ONE | 2014
Dorte H. Højland; Karl-Martin Vagn Jensen; Michael Kristensen
Background The housefly, Musca domestica, has developed resistance to most insecticides applied for its control. Expression of genes coding for detoxification enzymes play a role in the response of the housefly when encountered by a xenobiotic. The highest level of constitutive gene expression of nine P450 genes was previously found in a newly-collected susceptible field population in comparison to three insecticide-resistant laboratory strains and a laboratory reference strain. Results We compared gene expression of five P450s by qPCR as well as global gene expression by RNAseq in the newly-acquired field population (845b) in generation F1, F13 and F29 to test how gene expression changes following laboratory adaption. Four (CYP6A1, CYP6A36, CYP6D3, CYP6G4) of five investigated P450 genes adapted to breeding by decreasing expression. CYP6D1 showed higher female expression in F29 than in F1. For males, about half of the genes accessed in the global gene expression were up-regulated in F13 and F29 in comparison with the F1 population. In females, 60% of the genes were up-regulated in F13 in comparison with F1, while 33% were up-regulated in F29. Forty potential P450 genes were identified. In most cases, P450 gene expression was decreased in F13 flies in comparison with F1. Gene expression then increased from F13 to F29 in males and decreased further in females. Conclusion The global gene expression changes massively during adaptation to laboratory breeding. In general, global expression decreased as a result of laboratory adaption in males, while female expression was not unidirectional. Expression of P450 genes was in general down-regulated as a result of laboratory adaption. Expression of hexamerin, coding for a storage protein was increased, while gene expression of genes coding for amylases decreased. This suggests a major impact of the surrounding environment on gene response to xenobiotics and genetic composition of housefly strains.
Biocontrol Science and Technology | 2015
Nassor Rashid Abdulla; Gration M. Rwegasira; Karl-Martin Vagn Jensen; Maulid Mwatawala; Joachim Offenberg
Many studies have shown the efficiency of using weaver ants (Oecophylla species) as natural biocontrol agents against agricultural pests. Supplementary feeding could promote fast growth of this ants population and discourage them from moving away. However, such artificial feeding might slow down ants search rates and in this way make them less efficient bio-agents. The experiments were conducted for two consecutive seasons at Naliendele Research Station. Cashew trees planted at a spacing of 12 m × 12 m in 2002 were used to investigate whether supplementary feeding could enhance foraging behaviour of Oecophylla longinoda. Fed O. longinoda colonies fed weaver ants (FWA) were supplemented with a 30% sugar solution and approximately 22 g of finely ground fish meat at two-week intervals while the unfed colonies unfed weaver ants (UWA) had access to only naturally occurring food sources. Weaver ant densities and pest damage were monitored fortnightly on newly damaged shoots, panicles and fruits and nut yields assessed after each harvest season. The results revealed that there was a significant difference (P < 0.05) with higher weaver ant densities in the FWA compared to UWA colonies and significantly lower (P < 0.05) pest damage levels were recorded on weaver ant treatments compared to plots without weaver ants. No significant differences (P > 0.05) in yields and mean damage levels were recorded between the two weaver ant treatments. Highest nut yield (4.22 ± 0.30 kg/tree and 5.37 ± 0.27 kg/tree) was recorded in the fed colonies, followed by non-fed colonies (4.20 ± 0.30 kg/tree and 4.88 ± 0.24 kg/tree) and the least (2.66 ± 0.19 kg/tree and 2.99 ± 0.19 kg/tree) was recorded from the untreated controls in 2012/2013 and 2013/2014, respectively. The studies indicated that supplementary feeding could boost weaver ants to higher population levels without reducing their effectiveness as biocontrol agents.
Insect Conservation and Diversity | 2015
Christian Pinkalski; Christian Damgaard; Karl-Martin Vagn Jensen; René Gislum; Renkang K. Peng; Joachim Offenberg
In most ecosystems, ants are a dominant part of the arthropod community. A thorough understanding of their ecological impact, however, has been hampered by limited availability of data on ant abundance. Therefore, we developed a method allowing quick and non‐destructive estimates of the biomass of Oecophylla smaragdina colonies in mango plantations. The method was based on assessments of ant nest volume in relation to ant trail density and biomass content in relation to nest volume. The relationships between these variables were modelled using Bayesian latent variable models. The resulting models predicted ant biomass from ant trail activity with a maximum uncertainty of approximately 75% of the predicted value. Five O. smaragdina colonies assessed in a mango plantation, ranged in size from 0.67 to 2.98 kg total ant biomass (fresh wt) and 84.578–376.635 workers for the smallest and largest colony respectively. Correspondingly, the density of ants in the plantation was 254 workers m−2 and a total biomass of 2.0 g ant fresh wt m−2. With this proposed method, estimates of O. smaragdina abundance can be obtained non‐destructively with a minimum of workload and it enables the scaling up of physiological experiments on per capita rates. Thus, O. smaragdina can serve as a model species providing information on the impact of ants in tropical ecosystems.