Karl Perron
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karl Perron.
Journal of Biological Chemistry | 2004
Karl Perron; Olivier Caille; Claude Rossier; Christian van Delden; Jean-Luc Claude Dumas; Thilo Köhler
Pseudomonas aeruginosa is an environmental bacterium involved in mineralization of organic matter. It is also an opportunistic pathogen able to cause serious infections in immunocompromised hosts. As such, it is exposed to xenobiotics including solvents, heavy metals, and antimicrobials. We studied the response of P. aeruginosa upon exposure to heavy metals or antibiotics to investigate whether common regulatory mechanisms govern resistance to both types of compounds. We showed that sublethal zinc concentrations induced resistance to zinc, cadmium, and cobalt, while lethal zinc concentrations selected mutants constitutively resistant to these heavy metals. Both zinc-induced and stable zinc-resistant strains were also resistant to the carbapenem antibiotic imipenem. On the other hand, only 20% of clones selected on imipenem were also resistant to zinc. Heavy metal resistance in the mutants could be correlated by quantitative real time PCR with increased expression of the heavy metal efflux pump CzcCBA and its cognate two-component regulator genes czcR-czcS. Western blot analysis revealed reduced expression of the basic amino acid and carbapenem-specific OprD porin in all imipenem-resistant mutants. Sequencing of the czcR-czcS DNA region in eight independent zinc- and imipenem-resistant mutants revealed the presence of the same V194L mutation in the CzcS sensor protein. Overexpression in a susceptible wild type strain of the mutated CzsS protein, but not of the wild type form, resulted in decreased oprD and increased czcC expression. We further show that zinc is released from latex urinary catheters into urine in amounts sufficient to induce carbapenem resistance in P. aeruginosa, possibly compromising treatment of urinary tract infections by this class of antibiotics.
The EMBO Journal | 1999
Karl Perron; Michel Goldschmidt-Clermont; Jean-David Rochaix
In Chlamydomonas reinhardtii, the psaA mRNA is assembled by a process involving two steps of trans‐splicing that remove two group II introns and give rise to the mature mRNA. The products of at least 14 nuclear genes and one chloroplast gene (tscA) are necessary for this process. We have cloned Maa2, one of the nuclear genes involved in trans‐splicing of the second intron. Maa2 encodes a protein with similarity to conserved domains of pseudouridine synthases, but mutagenesis of putative catalytic residues showed that this activity may not be required for trans‐splicing of psaA RNA. Although it is not clear whether the pseudouridine synthase activity has been maintained in Maa2, it is possible that this enzyme was recruited during evolution as an RNA chaperone for folding or stabilizing the psaA intron. The Maa2 protein appears to be associated through ionic interactions with a low density membrane system in the chloroplast that also contains RNA‐binding proteins involved in translation.
Journal of Bacteriology | 2007
Olivier Caille; Claude Rossier; Karl Perron
The effects of copper (Cu) on trace metal and antibiotic resistance of Pseudomonas aeruginosa have been investigated. Cu treatments induced resistance not only to this metal but also, surprisingly, to zinc (Zn). Quantitative reverse transcription-PCR (qRT-PCR) revealed that after Cu treatment the transcription of the czcRS two-component system (TCS) operon was enhanced as well as that of the czcCBA operon encoding an efflux pump specific for zinc, cadmium, and cobalt. Cu treatments at the same time caused a decrease in the production of OprD porin, resulting in resistance to the carbapenem antibiotic imipenem. The CzcR regulator was known to repress oprD. However, Cu was still able to decrease the production of OprD and induce imipenem resistance in a czcRS knockout mutant. This strongly suggested that another Cu-dependent regulatory system was acting negatively on oprD expression. TCS regulator genes copR-copS have been shown to be involved in Cu tolerance in P. aeruginosa. qRT-PCR showed that overproduction of the CopR or of the CzcR regulator resulted in increased transcription of the czcC gene as well as in a decrease in oprD gene transcription, either in the wild-type strain or in the czcRS knockout mutant. Overproduction experiments suggest that a metal-dependent mechanism operates at the posttranscriptional level to control the production of the CzcCBA efflux pump. This study shows that CopR is a new negative regulator of OprD porin and that it links Zn, Cu, and imipenem resistances by interacting with the CzcRS TCS.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Anna Rita Corvaglia; Patrice Francois; David Hernandez; Karl Perron; Patrick Linder; Jacques Schrenzel
Staphylococcus aureus is an versatile pathogen that can cause life-threatening infections. Depending on the clinical setting, up to 50% of S. aureus infections are caused by methicillin-resistant strains (MRSA) that in most cases are resistant to many other antibiotics, making treatment difficult. The emergence of community-acquired MRSA drastically changed the picture by increasing the risk of MRSA infections. Horizontal transfer of genes encoding for antibiotic resistance or virulence factors is a major concern of multidrug-resistant S. aureus infections and epidemiology. We identified and characterized a type III-like restriction system present in clinical S. aureus strains that prevents transformation with DNA from other bacterial species. Interestingly, our analysis revealed that some clinical MRSA strains are deficient in this restriction system, and thus are hypersusceptible to the horizontal transfer of DNA from other species, such as Escherichia coli, and could easily acquire a vancomycin-resistance gene from enterococci. Inactivation of this restriction system dramatically increases the transformation efficiency of clinical S. aureus strains, opening the field of molecular genetic manipulation of these strains using DNA of exogenous origin.
Journal of Bacteriology | 2003
Florence Jude; Thilo Köhler; Pavel Branny; Karl Perron; Matthias P. Mayer; Rachel Comte; Christian van Delden
Pseudomonas aeruginosa controls the secretion of extracellular virulence factors, including rhamnolipids and LasB elastase, by the las and rhl quorum-sensing systems. Here, we mutated the dksA gene of P. aeruginosa by insertion of an Omega-Hg cassette. The mutant displayed growth rates similar to that of the wild type in rich medium but was impaired in growth in defined minimal medium. Production of rhamnolipids and LasB elastase by the dksA mutant was only 4 and 10%, respectively, of wild-type levels. These defects could be partially complemented by introduction of the plasmid-encoded dksA genes from P. aeruginosa or Escherichia coli. In the dksA mutant, the expression of rhlI was increased early during exponential growth, but expression of other quorum-sensing regulator genes-lasR, lasI, and rhlR-was not affected. Although the transcription of the lasB and rhlAB genes was comparable between the dksA mutant and the wild-type strain in peptone tryptic soy broth medium, we observed reduced translation of both genes in the dksA mutant. Similarly, we found that full translation of lasB and rhlAB genes in E. coli also requires the dksA gene. DksA is therefore a novel regulator involved in the posttranscriptional control of extracellular virulence factor production in P. aeruginosa.
Journal of Cell Biology | 2002
Andrea H. Auchincloss; William Zerges; Karl Perron; Jacqueline Girard-Bascou; Jean-David Rochaix
Genetic analysis has revealed that the three nucleus-encoded factors Tbc1, Tbc2, and Tbc3 are involved in the translation of the chloroplast psbC mRNA of the eukaryotic green alga Chlamydomonas reinhardtii. In this study we report the isolation and phenotypic characterization of two new tbc2 mutant alleles and their use for cloning and characterizing the Tbc2 gene by genomic complementation. TBC2 encodes a protein of 1,115 residues containing nine copies of a novel degenerate 38–40 amino acid repeat with a quasiconserved PPPEW motif near its COOH-terminal end. The middle part of the Tbc2 protein displays partial amino acid sequence identity with Crp1, a protein from Zea mays that is implicated in the processing and translation of the chloroplast petA and petD RNAs. The Tbc2 protein is enriched in chloroplast stromal subfractions and is associated with a 400-kD protein complex that appears to play a role in the translation of specifically the psbC mRNA.
Molecular Microbiology | 2005
Karl Perron; Rachel Comte; Christian van Delden
In Escherichia coli transcription of ribosomal RNA (rRNA) is regulated by the H‐NS and Fis proteins, as well as by the small signal molecule ppGpp and the initiating nucleotides. During amino acid starvation, the concentration of ppGpp increases, and binding of this alarmone to RNA polymerase (RNAP) leads to inhibition of rRNA transcription, a regulatory event called stringent response. Here we show that in Pseudomonas aeruginosa DksA, a protein with pleiotropic effects, is a negative regulator of rRNA transcription both during exponential growth and stringent conditions. A dksA mutant overexpresses rRNA, without being affected in the production of ppGpp. Cell‐fractionation and chromosome immunoprecipitation experiments demonstrate that DksA is associated with DNA, in particular with promoters of ribosomal genes in vivo. The binding to rRNA promoters specifically increases during stringent response, and correlates with the binding of RNAP to these regions. Moreover DksA can be copurified with RNAP subunits in vivo. DNA band shift experiments show that DksA, in synergy with ppGpp, increases the binding of RNAP to ribosomal promoters. Therefore DksA might be a new regulator of rRNA transcription in P. aeruginosa.
PLOS ONE | 2012
Guennaelle Dieppois; Verena Ducret; Olivier Caille; Karl Perron
The opportunistic pathogen Pseudomonas aeruginosa responds to zinc, cadmium and cobalt by way of the CzcRS two-component system. In presence of these metals the regulatory protein CzcR induces the expression of the CzcCBA efflux pump, expelling and thereby inducing resistance to Zn, Cd and Co. Importantly, CzcR co-regulates carbapenem antibiotic resistance by repressing the expression of the OprD porin, the route of entry for these antibiotics. This unexpected co-regulation led us to address the role of CzcR in other cellular processes unrelated to the metal response. We found that CzcR affected the expression of numerous genes directly involved in the virulence of P. aeruginosa even in the absence of the inducible metals. Notably the full expression of quorum sensing 3-oxo-C12-HSL and C4-HSL autoinducer molecules is impaired in the absence of CzcR. In agreement with this, the virulence of the czcRS deletion mutant is affected in a C. elegans animal killing assay. Additionally, chromosome immunoprecipitation experiments allowed us to localize CzcR on the promoter of several regulated genes, suggesting a direct control of target genes such as oprD, phzA1 and lasI. All together our data identify CzcR as a novel regulator involved in the control of several key genes for P. aeruginosa virulence processes.
mSphere | 2016
Manuel R. Gonzalez; Betty Fleuchot; Leonardo Lauciello; Paris Jafari; Lee Ann Applegate; Wassim Raffoul; Yok-Ai Que; Karl Perron
Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound environment and for in vitro analysis of the initial step in the development of burn wound infections. ABSTRACT Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound environment and for in vitro analysis of the initial step in the development of burn wound infections.
Journal of Medicinal Chemistry | 2016
Liudas Slepikas; Gianpaolo Chiriano; Remo Perozzo; Sébastien Tardy; Agata Kranjc; Ophélie Patthey-Vuadens; Hajer Ouertatani-Sakouhi; Sébastien Kicka; Christopher F. Harrison; Tiziana Scrignari; Karl Perron; Hubert Hilbi; Thierry Soldati; Pierre Cosson; Eduardas Tarasevicius; Leonardo Scapozza
Here, we report on the design, synthesis, and biological evaluation of 4-thiazolidinone (rhodanine) derivatives targeting Mycobacterial tuberculosis (Mtb) trans-2-enoyl-acyl carrier protein reductase (InhA). Compounds having bulky aromatic substituents at position 5 and a tryptophan residue at position N-3 of the rhodanine ring were the most active against InhA, with IC50 values ranging from 2.7 to 30 μM. The experimental data showed consistent correlations with computational studies. Their antimicrobial activity was assessed against Mycobacterium marinum (Mm) (a model for Mtb), Pseudomonas aeruginosa (Pa), Legionella pneumophila (Lp), and Enterococcus faecalis (Ef) by using anti-infective, antivirulence, and antibiotic assays. Nineteen out of 34 compounds reduced Mm virulence at 10 μM. 33 exhibited promising antibiotic activity against Mm with a MIC of 0.21 μM and showed up to 89% reduction of Lp growth in an anti-infective assay at 30 μM. 32 showed high antibiotic activity against Ef, with a MIC of 0.57 μM.