Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl-Peter Hopfner is active.

Publication


Featured researches published by Karl-Peter Hopfner.


Cell | 2000

Structural Biology of Rad50 ATPase: ATP-Driven Conformational Control in DNA Double-Strand Break Repair and the ABC-ATPase Superfamily

Karl-Peter Hopfner; Annette Karcher; David S. Shin; Lisa Craig; L. Matthew Arthur; James P. Carney; John A. Tainer

To clarify the key role of Rad50 in DNA double-strand break repair (DSBR), we biochemically and structurally characterized ATP-bound and ATP-free Rad50 catalytic domain (Rad50cd) from Pyrococcus furiosus. Rad50cd displays ATPase activity plus ATP-controlled dimerization and DNA binding activities. Rad50cd crystal structures identify probable protein and DNA interfaces and reveal an ABC-ATPase fold, linking Rad50 molecular mechanisms to ABC transporters, including P glycoprotein and cystic fibrosis transmembrane conductance regulator. Binding of ATP gamma-phosphates to conserved signature motifs in two opposing Rad50cd molecules promotes dimerization that likely couples ATP hydrolysis to dimer dissociation and DNA release. These results, validated by mutations, suggest unified molecular mechanisms for ATP-driven cooperativity and allosteric control of ABC-ATPases in DSBR, membrane transport, and chromosome condensation by SMC proteins.


Nature | 2002

The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair.

Karl-Peter Hopfner; Lisa Craig; Gabriel Moncalian; Robert A. Zinkel; Takehiko Usui; Barbara A.L. Owen; Annette Karcher; Brendan Henderson; Jean Luc Bodmer; Cynthia T. McMurray; James P. Carney; John H.J. Petrini; John A. Tainer

The Mre11 complex (Mre11–Rad50–Nbs1) is central to chromosomal maintenance and functions in homologous recombination, telomere maintenance and sister chromatid association. These functions all imply that the linked binding of two DNA substrates occurs, although the molecular basis for this process remains unknown. Here we present a 2.2 Å crystal structure of the Rad50 coiled-coil region that reveals an unexpected dimer interface at the apex of the coiled coils in which pairs of conserved Cys-X-X-Cys motifs form interlocking hooks that bind one Zn2+ ion. Biochemical, X-ray and electron microscopy data indicate that these hooks can join oppositely protruding Rad50 coiled-coil domains to form a flexible bridge of up to 1,200 Å. This suggests a function for the long insertion in the Rad50 ABC-ATPase domain. The Rad50 hook is functional, because mutations in this motif confer radiation sensitivity in yeast and disrupt binding at the distant Mre11 nuclease interface. These data support an architectural role for the Rad50 coiled coils in forming metal-mediated bridging complexes between two DNA-binding heads. The resulting assemblies have appropriate lengths and conformational properties to link sister chromatids in homologous recombination and DNA ends in non-homologous end-joining.


Cell | 2001

Structural Biochemistry and Interaction Architecture of the DNA Double-Strand Break Repair Mre11 Nuclease and Rad50-ATPase

Karl-Peter Hopfner; Annette Karcher; Lisa Craig; Tammy T. Woo; James P. Carney; John A. Tainer

To clarify functions of the Mre11/Rad50 (MR) complex in DNA double-strand break repair, we report Pyrococcus furiosus Mre11 crystal structures, revealing a protein phosphatase-like, dimanganese binding domain capped by a unique domain controlling active site access. These structures unify Mre11s multiple nuclease activities in a single endo/exonuclease mechanism and reveal eukaryotic macromolecular interaction sites by mapping human and yeast Mre11 mutations. Furthermore, the structure of the P. furiosus Rad50 ABC-ATPase with its adjacent coiled-coil defines a compact Mre11/Rad50-ATPase complex and suggests that Rad50-ATP-driven conformational switching directly controls the Mre11 exonuclease. Electron microscopy, small angle X-ray scattering, and ultracentrifugation data of human and P. furiosus MR reveal a dual functional complex consisting of a (Mre11)2/(Rad50)2 heterotetrameric DNA processing head and a double coiled-coil linker.


Nature | 2013

cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING

Andrea Ablasser; Marion Goldeck; Taner Cavlar; Tobias Deimling; Gregor Witte; Ingo Röhl; Karl-Peter Hopfner; Janos Ludwig; Veit Hornung

Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING. We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2′-5′ and a 3′-5′ phosphodiester linkage >Gp(2′-5′)Ap(3′-5′)>. We found that the presence of this 2′-5′ linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2′-5′-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3′-5′ phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2′-5′-linked antiviral biomolecules.


Proceedings of the National Academy of Sciences of the United States of America | 2009

5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I.

Andreas Schmidt; Tobias Schwerd; Wolfgang Hamm; Johannes C. Hellmuth; Sheng Cui; Michael Wenzel; Franziska Hoffmann; Marie-Cecile Michallet; Robert Besch; Karl-Peter Hopfner; Stefan Endres; Simon Rothenfusser

The ATPase retinoid acid-inducible gene (RIG)-I senses viral RNA in the cytoplasm of infected cells and subsequently activates cellular antiviral defense mechanisms. RIG-I recognizes molecular structures that discriminate viral from host RNA. Here, we show that RIG-I ligands require base-paired structures in conjunction with a free 5′-triphosphate to trigger antiviral signaling. Hitherto unavailable chemically synthesized 5′-triphosphate RNA ligands do not trigger RIG-I-dependent IFN production in cells, and they are unable to trigger the ATPase activity of RIG-I without a base-paired stretch. Consistently, immunostimulatory RNA from cells infected with a virus recognized by RIG-I is sensitive to double-strand, but not single-strand, specific RNases. In vitro, base-paired stretches and the 5′-triphosphate bind to distinct sites of RIG-I and synergize to trigger the induction of signaling competent RIG-I multimers. Strengthening our model of a bipartite molecular pattern for RIG-I activation, we show that the activity of supposedly “single-stranded” 5′-triphosphate RNAs generated by in vitro transcription depends on extended and base-paired by-products inadvertently, but commonly, produced by this method. Together, our findings accurately define a minimal molecular pattern sufficient to activate RIG-I that can be found in viral genomes or transcripts.


Science | 2009

Cytosolic viral sensor RIG-I is a 5'-triphosphate-dependent translocase on double-stranded RNA.

Sua Myong; Sheng Cui; Peter V. Cornish; Axel Kirchhofer; Michaela U. Gack; Jae U. Jung; Karl-Peter Hopfner; Taekjip Ha

Retinoic acid inducible–gene I (RIG-I) is a cytosolic multidomain protein that detects viral RNA and elicits an antiviral immune response. Two N-terminal caspase activation and recruitment domains (CARDs) transmit the signal, and the regulatory domain prevents signaling in the absence of viral RNA. 5′-triphosphate and double-stranded RNA (dsRNA) are two molecular patterns that enable RIG-I to discriminate pathogenic from self-RNA. However, the function of the DExH box helicase domain that is also required for activity is less clear. Using single-molecule protein-induced fluorescence enhancement, we discovered a robust adenosine 5′-triphosphate–powered dsRNA translocation activity of RIG-I. The CARDs dramatically suppress translocation in the absence of 5′-triphosphate, and the activation by 5′-triphosphate triggers RIG-I to translocate preferentially on dsRNA in cis. This functional integration of two RNA molecular patterns may provide a means to specifically sense and counteract replicating viruses.


Molecular Cell | 2008

Structural Biochemistry of a Bacterial Checkpoint Protein Reveals Diadenylate Cyclase Activity Regulated by DNA Recombination Intermediates

Gregor Witte; Sophia Hartung; Katharina Büttner; Karl-Peter Hopfner

To reveal mechanisms of DNA damage checkpoint initiation, we structurally and biochemically analyzed DisA, a protein that controls a Bacillus subtilis sporulation checkpoint in response to DNA double-strand breaks. We find that DisA forms a large octamer that consists of an array of an uncharacterized type of nucleotide-binding domain along with two DNA-binding regions related to the Holliday junction recognition protein RuvA. Remarkably, the nucleotide-binding domains possess diadenylate cyclase activity. The resulting cyclic diadenosine phosphate, c-di-AMP, is reminiscent but distinct from c-di-GMP, an emerging prokaryotic regulator of complex cellular processes. Diadenylate cyclase activity is unaffected by linear DNA or DNA ends but strongly suppressed by branched nucleic acids such as Holliday junctions. Our data indicate that DisA signals DNA structures that interfere with chromosome segregation via c-di-AMP. Identification of the diadenylate cyclase domain in other eubacterial and archaeal proteins implies a more general role for c-di-AMP in prokaryotes.


Nature Structural & Molecular Biology | 2007

Structural basis for DNA duplex separation by a superfamily-2 helicase.

Katharina Büttner; Sebastian Nehring; Karl-Peter Hopfner

To reveal the mechanism of processive strand separation by superfamily-2 (SF2) 3′→5′ helicases, we determined apo and DNA-bound crystal structures of archaeal Hel308, a helicase that unwinds lagging strands and is related to human DNA polymerase θ. Our structure captures the duplex-unwinding reaction, shows that initial strand separation does not require ATP and identifies a prominent β-hairpin loop as the unwinding element. Similar loops in hepatitis C virus NS3 helicase and RNA-decay factors support the idea that this duplex-unwinding mechanism is applicable to a broad subset of SF2 helicases. Comparison with ATP-bound SF2 enzymes suggests that ATP promotes processive unwinding of 1 base pair by ratchet-like transport of the 3′ product strand. Our results provide a first structural framework for strand separation by processive SF2 3′→5′ helicases and reveal important mechanistic differences from SF1 helicases.


Cell | 2005

X-Ray Structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase Core and Its Complex with DNA

Harald Dürr; Christian Körner; Marisa Müller; Volker Hickmann; Karl-Peter Hopfner

SWI2/SNF2 ATPases remodel chromatin or other DNA:protein complexes by a poorly understood mechanism that involves ATP-dependent DNA translocation and generation of superhelical torsion. Crystal structures of a dsDNA-translocating SWI2/SNF2 ATPase core from Sulfolobus solfataricus reveal two helical SWI2/SNF2 specific subdomains, fused to a DExx box helicase-related ATPase core. Fully base paired duplex DNA binds along a central cleft via both minor groove strands, indicating that SWI2/SNF2 ATPases travel along the dsDNA minor groove without strand separation. A structural switch, linking DNA binding and the active site DExx motif, may account for the stimulation of ATPase activity by dsDNA. Our results suggest that torque in remodeling processes is generated by an ATP-driven screw motion of DNA along the active site cleft. The structures also redefine SWI2/SNF2 functional motifs and uncover unexpected structural correlation of mutations in Cockayne and X-linked mental retardation syndromes.


Nature Structural & Molecular Biology | 2010

Modulation of protein properties in living cells using nanobodies

Axel Kirchhofer; Jonas Helma; Katrin Schmidthals; Carina Frauer; Sheng Cui; Annette Karcher; Mireille Pellis; Serge Muyldermans; Corella S. Casas-Delucchi; M. Cristina Cardoso; Heinrich Leonhardt; Karl-Peter Hopfner; Ulrich Rothbauer

Protein conformation is critically linked to function and often controlled by interactions with regulatory factors. Here we report the selection of camelid-derived single-domain antibodies (nanobodies) that modulate the conformation and spectral properties of the green fluorescent protein (GFP). One nanobody could reversibly reduce GFP fluorescence by a factor of 5, whereas its displacement by a second nanobody caused an increase by a factor of 10. Structural analysis of GFP–nanobody complexes revealed that the two nanobodies induce subtle opposing changes in the chromophore environment, leading to altered absorption properties. Unlike conventional antibodies, the small, stable nanobodies are functional in living cells. Nanobody-induced changes were detected by ratio imaging and used to monitor protein expression and subcellular localization as well as translocation events such as the tamoxifen-induced nuclear localization of estrogen receptor. This work demonstrates that protein conformations can be manipulated and studied with nanobodies in living cells.

Collaboration


Dive into the Karl-Peter Hopfner's collaboration.

Top Co-Authors

Avatar

John A. Tainer

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Annette Karcher

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sheng Cui

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg H. Fey

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Ingo Schubert

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge