Karl R. Wotton
Pompeu Fabra University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karl R. Wotton.
PLOS Computational Biology | 2012
Anton Crombach; Karl R. Wotton; Damjan Cicin-Sain; Maksat Ashyraliyev; Johannes Jaeger
Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to discover whether there are rules or regularities governing development and evolution of complex multi-cellular organisms.
BMC Genomics | 2006
Karl R. Wotton; Sebastian M. Shimeld
BackgroundVertebrate genomes contain numerous duplicate genes, many of which are organised into paralagous regions indicating duplication of linked groups of genes. Comparison of genomic organisation in different lineages can often allow the evolutionary history of such regions to be traced. A classic example of this is the Hox genes, where the presence of a single continuous Hox cluster in amphioxus and four vertebrate clusters has allowed the genomic evolution of this region to be established. Fox transcription factors of the C, F, L1 and Q1 classes are also organised in clusters in both amphioxus and humans. However in contrast to the Hox genes, only two clusters of paralogous Fox genes have so far been identified in the Human genome and the organisation in other vertebrates is unknown.ResultsTo uncover the evolutionary history of the Fox clusters, we report on the comparative genomics of these loci. We demonstrate two further paralogous regions in the Human genome, and identify orthologous regions in mammalian, chicken, frog and teleost genomes, timing the duplications to before the separation of the actinopterygian and sarcopterygian lineages. An additional Fox class, FoxS, was also found to reside in this duplicated genomic region.ConclusionComparison of loci identifies the pattern of gene duplication, loss and cluster break up through multiple lineages, and suggests FoxS1 is a likely remnant of Fox cluster duplication.
BMC Genomics | 2013
Eva Jiménez-Guri; Jaime Huerta-Cepas; Luca Cozzuto; Karl R. Wotton; Hui Kang; Heinz Himmelbauer; Guglielmo Roma; Toni Gabaldón; Johannes Jaeger
BackgroundModern sequencing technologies have massively increased the amount of data available for comparative genomics. Whole-transcriptome shotgun sequencing (RNA-seq) provides a powerful basis for comparative studies. In particular, this approach holds great promise for emerging model species in fields such as evolutionary developmental biology (evo-devo).ResultsWe have sequenced early embryonic transcriptomes of two non-drosophilid dipteran species: the moth midge Clogmia albipunctata, and the scuttle fly Megaselia abdita. Our analysis includes a third, published, transcriptome for the hoverfly Episyrphus balteatus. These emerging models for comparative developmental studies close an important phylogenetic gap between Drosophila melanogaster and other insect model systems. In this paper, we provide a comparative analysis of early embryonic transcriptomes across species, and use our data for a phylogenomic re-evaluation of dipteran phylogenetic relationships.ConclusionsWe show how comparative transcriptomics can be used to create useful resources for evo-devo, and to investigate phylogenetic relationships. Our results demonstrate that de novo assembly of short (Illumina) reads yields high-quality, high-coverage transcriptomic data sets. We use these data to investigate deep dipteran phylogenetic relationships. Our results, based on a concatenation of 160 orthologous genes, provide support for the traditional view of Clogmia being the sister group of Brachycera (Megaselia, Episyrphus, Drosophila), rather than that of Culicomorpha (which includes mosquitoes and blackflies).
BMC Evolutionary Biology | 2008
Karl R. Wotton; Frida K. Weierud; Susanne Dietrich; Katharine E. Lewis
BackgroundLbx/ladybird genes originated as part of the metazoan cluster of Nk homeobox genes. In all animals investigated so far, both the protostome genes and the vertebrate Lbx1 genes were found to play crucial roles in neural and muscle development. Recently however, additional Lbx genes with divergent expression patterns were discovered in amniotes. Early in the evolution of vertebrates, two rounds of whole genome duplication are thought to have occurred, during which 4 Lbx genes were generated. Which of these genes were maintained in extant vertebrates, and how these genes and their functions evolved, is not known.ResultsHere we searched vertebrate genomes for Lbx genes and discovered novel members of this gene family. We also identified signature genes linked to particular Lbx loci and traced the remnants of 4 Lbx paralogons (two of which retain Lbx genes) in amniotes. In teleosts, that have undergone an additional genome duplication, 8 Lbx paralogons (three of which retain Lbx genes) were found. Phylogenetic analyses of Lbx and Lbx-associated genes show that in extant, bony vertebrates only Lbx1- and Lbx2-type genes are maintained. Of these, some Lbx2 sequences evolved faster and were probably subject to neofunctionalisation, while Lbx1 genes may have retained more features of the ancestral Lbx gene. Genes at Lbx1 and former Lbx4 loci are more closely related, as are genes at Lbx2 and former Lbx3 loci. This suggests that during the second vertebrate genome duplication, Lbx1/4 and Lbx2/3 paralogons were generated from the duplicated Lbx loci created during the first duplication event.ConclusionOur study establishes for the first time the evolutionary history of Lbx genes in bony vertebrates, including the order of gene duplication events, gene loss and phylogenetic relationships. Moreover, we identified genetic hallmarks for each of the Lbx paralogons that can be used to trace Lbx genes as other vertebrate genomes become available. Significantly, we show that bony vertebrates only retained copies of Lbx1 and Lbx2 genes, with some Lbx2 genes being highly divergent. Thus, we have established a base on which the evolution of Lbx gene function in vertebrate development can be evaluated.
Developmental Dynamics | 2008
Karl R. Wotton; Francoise Mazet; Sebastian M. Shimeld
In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. Here we characterize all four gene families in the dogfish Scyliorhinus canicula, a member of the cartilaginous fish lineage that diverged before the radiation of osteichthyan vertebrates. We identify two FoxC genes, two FoxF genes, and single FoxQ1 and FoxL1 genes, demonstrating cluster duplication preceded the radiation of gnathostomes. The expression of all six genes was analyzed by in situ hybridization. The results show conserved expression of FoxL1, FoxF, and FoxC genes in different compartments of the mesoderm and of FoxQ1 in pharyngeal endoderm and its derivatives, confirming these as ancient sites of Fox gene expression, and also illustrate multiple cases of lineage‐specific expression domains. Comparison to invertebrate chordates shows that the majority of conserved vertebrate expression domains mark tissues that are part of the primitive chordate body plan. Developmental Dynamics 237:1590‐1603, 2008.
eLife | 2015
Karl R. Wotton; Eva Jiménez-Guri; Anton Crombach; Hilde Janssens; Anna Alcaine-Colet; Steffen Lemke; Urs Schmidt-Ott; Johannes Jaeger
The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring ‘quantitative system drift’. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution. DOI: http://dx.doi.org/10.7554/eLife.04785.001
PLOS ONE | 2012
Anton Crombach; Damjan Cicin-Sain; Karl R. Wotton; Johannes Jaeger
Understanding the function and evolution of developmental regulatory networks requires the characterisation and quantification of spatio-temporal gene expression patterns across a range of systems and species. However, most high-throughput methods to measure the dynamics of gene expression do not preserve the detailed spatial information needed in this context. For this reason, quantification methods based on image bioinformatics have become increasingly important over the past few years. Most available approaches in this field either focus on the detailed and accurate quantification of a small set of gene expression patterns, or attempt high-throughput analysis of spatial expression through binary pattern extraction and large-scale analysis of the resulting datasets. Here we present a robust, “medium-throughput” pipeline to process in situ hybridisation patterns from embryos of different species of flies. It bridges the gap between high-resolution, and high-throughput image processing methods, enabling us to quantify graded expression patterns along the antero-posterior axis of the embryo in an efficient and straightforward manner. Our method is based on a robust enzymatic (colorimetric) in situ hybridisation protocol and rapid data acquisition through wide-field microscopy. Data processing consists of image segmentation, profile extraction, and determination of expression domain boundary positions using a spline approximation. It results in sets of measured boundaries sorted by gene and developmental time point, which are analysed in terms of expression variability or spatio-temporal dynamics. Our method yields integrated time series of spatial gene expression, which can be used to reverse-engineer developmental gene regulatory networks across species. It is easily adaptable to other processes and species, enabling the in silico reconstitution of gene regulatory networks in a wide range of developmental contexts.
Developmental Biology | 2013
Hilde Janssens; Anton Crombach; Karl R. Wotton; Damjan Cicin-Sain; Svetlana Surkova; Chea Lu Lim; Maria Samsonova; Michael Akam; Johannes Jaeger
Developmental processes are robust, or canalised: dynamic patterns of gene expression across space and time are regulated reliably and precisely in the presence of genetic and environmental perturbations. It remains unclear whether canalisation relies on specific regulatory factors (such as heat-shock proteins), or whether it is based on more general redundancy and distributed robustness at the network level. The latter explanation implies that mutations in many regulatory factors should exhibit loss of canalisation. Here, we present a quantitative characterisation of segmentation gene expression patterns in mutants of the terminal gap gene tailless (tll) in Drosophila melanogaster. Our analysis provides new insights into the dynamic mechanisms underlying gap gene regulation, and reveals significantly increased variability of gene expression in the mutant compared to the wild-type background. We show that both position and timing of posterior segmentation gene expression domains vary strongly from embryo-to-embryo in tll mutants. This variability must be caused by a vulnerability in the regulatory system which is hidden or buffered in the wild-type, but becomes uncovered by the deletion of tll. Our analysis provides evidence that loss of canalisation in mutants could be more widespread than previously thought.
Developmental Biology | 2014
Corinne Lours-Calet; Lúcia Elvira Alvares; Amira S. El-Hanfy; Saniel Gandesha; Esther H. Walters; Débora Rodrigues Sobreira; Karl R. Wotton; Erika Cristina Jorge; Jennifer A. Lawson; A. Kelsey Lewis; Masazumi Tada; Colin Sharpe; Gabrielle Kardon; Susanne Dietrich
The vertebrate head–trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head–trunk interface.
Molecular Biology and Evolution | 2016
Anton Crombach; Karl R. Wotton; Eva Jiménez-Guri; Johannes Jaeger
Developmental gene networks implement the dynamic regulatory mechanisms that pattern and shape the organism. Over evolutionary time, the wiring of these networks changes, yet the patterning outcome is often preserved, a phenomenon known as “system drift.” System drift is illustrated by the gap gene network—involved in segmental patterning—in dipteran insects. In the classic model organism Drosophila melanogaster and the nonmodel scuttle fly Megaselia abdita, early activation and placement of gap gene expression domains show significant quantitative differences, yet the final patterning output of the system is essentially identical in both species. In this detailed modeling analysis of system drift, we use gene circuits which are fit to quantitative gap gene expression data in M. abdita and compare them with an equivalent set of models from D. melanogaster. The results of this comparative analysis show precisely how compensatory regulatory mechanisms achieve equivalent final patterns in both species. We discuss the larger implications of the work in terms of “genotype networks” and the ways in which the structure of regulatory networks can influence patterns of evolutionary change (evolvability).