Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl Wilhelm Bauer is active.

Publication


Featured researches published by Karl Wilhelm Bauer.


Monatshefte für Mathematik | 1975

Eine verallgemeinerte Darboux-Gleichung I@@@A generalized Darboux equation I

Karl Wilhelm Bauer

AbstractThe paper is concerned with the elliptic equation


European Journal of Inorganic Chemistry | 1905

Uebergänge von der Phenanthren‐ in die Fluoren‐Reihe. (Studien in der Phenanthren‐Reihe. XVIII. Mittheilung)

Julius Schmidt; Karl Wilhelm Bauer


Monatshefte für Mathematik | 1971

Über differentialgleichungen der form\(F(z,\bar z)w_{z\bar z} - n(n + 1)w = 0\)

Karl Wilhelm Bauer

\begin{gathered} w_{z\bar z} + \left[ {\frac{{n (n + 1)}}{{(z - \bar z)^2 }} - \frac{{m (m + 1)}}{{(z + \bar z)^2 }} + \frac{{q (q + 1)}}{{(1 + z\bar z)^2 }} - \frac{{p (p + 1)}}{{(1 - z\bar z)^2 }}} \right]w = 0, \hfill \\ n, m, p, q \in \mathbb{N}_0 . \hfill \\ \end{gathered}


European Journal of Inorganic Chemistry | 1905

Ueber die Einwirkung von Salpetersäure auf Fluorenon und die Abkömmlinge der entstehenden Nitroderivate

Julius Schmidt; Karl Wilhelm Bauer


European Journal of Inorganic Chemistry | 1905

Ueber die Einwirkung von Brom auf Fluoren und Fluorenon

Julius Schmidt; Karl Wilhelm Bauer

General representation theorems for, the solutions are derived by differential operators if three parameters are different from zero or two parameters are equal. Some applications are given to pseudo-analytic functions and generalized Tricomi equations.AbstractThe paper is concerned with the elliptic equation


Monatshefte für Mathematik | 1978

Determination and application of Vekua resolvents

Karl Wilhelm Bauer


Monatshefte für Mathematik | 1972

Allgemeine Darstellungssätze bei einer Klasse partieller Differentialgleichungen gerader Ordnung

Karl Wilhelm Bauer

\begin{gathered} w_{z\bar z} + \left[ {\frac{{n(n + 1)}}{{(z - \bar z)^2 }} - \frac{{m(m + 1)}}{{(z + \bar z)^2 }} + \frac{{q(q + 1)}}{{(1 + z\bar z)^2 }} - \frac{{p(p + 1)}}{{(1 - z\bar z)^2 }}} \right]w = 0, \hfill \\ n,m,p,q \in \mathbb{N}_0 . \hfill \\ \end{gathered}


Monatshefte für Mathematik | 1968

Über die Lösungen der inhomogenen elliptischen Differentialgleichung\((1 + \varepsilon z\overline z )^2 w_{z\overline z } + \varepsilon n(n + 1)w = \Phi (z,\overline z )\)

Karl Wilhelm Bauer


Monatshefte für Mathematik | 1975

A generalized Darboux equation II.

Karl Wilhelm Bauer

General representation theorems for the solutions are derived by differential operators if three parameters are different from zero or two parameters are equal. Some applications are given to pseudo-analytic functions and generalized Tricomi equations.


Monatshefte für Mathematik | 1971

Über differentialgleichungen der form

Karl Wilhelm Bauer

Collaboration


Dive into the Karl Wilhelm Bauer's collaboration.

Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge