Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karla K.V. Haack is active.

Publication


Featured researches published by Karla K.V. Haack.


American Journal of Physiology-renal Physiology | 2011

Renal denervation modulates angiotensin receptor expression in the renal cortex of rabbits with chronic heart failure

Sarah C Clayton; Karla K.V. Haack; Irving H. Zucker

Excessive sympathetic drive is a hallmark of chronic heart failure (HF). Disease progression can be correlated with plasma norepinephrine concentration. Renal function is also correlated with disease progression and prognosis. Because both the renal nerves and renin-angiotensin II system are activated in chronic HF we hypothesized that excessive renal sympathetic nerve activity decreases renal blood flow in HF and is associated with changes in angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) expression. The present study was carried out in conscious, chronically instrumented rabbits with pacing-induced HF. We found that rabbits with HF showed a decrease in mean renal blood flow (19.8±1.6 in HF vs. 32.0±2.5 ml/min from prepace levels; P<0.05) and an increase in renal vascular resistance (3.26±0.29 in HF vs. 2.21±0.13 mmHg·ml(-1)·min in prepace normal rabbits; P<0.05) while the blood flow and resistance was not changed in HF rabbits with the surgical renal denervation. Renal AT1R expression was increased by ∼67% and AT2R expression was decreased by ∼87% in rabbits with HF; however, kidneys from denervated rabbits with HF showed a near normalization in the expression of these receptors. These results suggest renal sympathetic nerve activity elicits a detrimental effect on renal blood flow and may be associated with alterations in the expression of angiotensin II receptors.


Hypertension | 2012

Parallel Changes in Neuronal AT1R and GRK5 Expression Following Exercise Training in Heart Failure

Karla K.V. Haack; Christopher William Engler; Evlampia Papoutsi; Iraklis I. Pipinos; Kaushik P. Patel; Irving H. Zucker

Although exercise training (ExT) is an important therapeutic strategy for improving quality of life in patients with chronic heart failure (CHF), the central mechanisms by which ExT is beneficial are not well understood. The angiotensin II type 1 receptor (AT1R) plays a pivotal role in the development of CHF and is upregulated in a number of tissues owing, in part, to transcription factor nuclear factor kappa B (NF-&kgr;B). In addition, AT1R is marked for internalization and recycling via G-protein–coupled receptor kinase (GRK) phosphorylation. Because previous studies have shown that the beneficial effects of ExT in CHF rely on a reduction in angiotensin II, we hypothesized ExT would decrease AT1R, GRK5, and NF-&kgr;B protein expression in the paraventricular nucleus and rostral ventrolateral medulla of CHF rats. Following infarction by coronary artery ligation, animals were exercised 4 weeks postsurgery on a treadmill at a final speed of 25 miles per minute for 60 minutes, 5 days per week for 6 weeks. Western blot analysis of paraventricular nucleus and rostral ventrolateral medulla micropunches revealed an upregulation of AT1R, GRK5, and NF-&kgr;B in the infarcted group that was reversed by ExT. Furthermore, the relative expression of phosphorylated AT1R and AT1R/GRK5 physical association was increased in the CHF sedentary group and reversed by ExT. Overexpression of GRK5 in cultured CATH.a neurons blunted angiotensin II-mediated upregulation of AT1R and NF-&kgr;B; conversely, silencing of GRK5 exacerbated angiotensin II-mediated AT1R and NF-&kgr;B upregulation. Taken together, increased GRK5 may regulate AT1R expression in CHF, and ExT mitigates AT1R and its pathway components.


Hypertension | 2014

Simvastatin Treatment Attenuates Increased Respiratory Variability and Apnea/Hypopnea Index in Rats With Chronic Heart Failure

Karla K.V. Haack; Noah J. Marcus; Rodrigo Del Rio; Irving H. Zucker; Harold D. Schultz

Cheyne–Stokes respiration and cardiac arrhythmias are associated with increased morbidity and mortality in patients with chronic heart failure (CHF). Enhanced carotid body chemoreflex (CBC) sensitivity is associated with these abnormalities in CHF. Reduced carotid body (CB) nitric oxide and nitric oxide synthase (NOS) levels play an important role in the enhanced CBC. In other disease models, Simvastatin (statin) treatment increases endothelial NOS, in part, by increasing Krüppel-like Factor 2 expression. We hypothesized that statin treatment would ameliorate enhanced CBC sensitivity as well as increased respiratory variability, apnea/hypopnea index, and arrhythmia index, in a rodent model of CHF. Resting breathing pattern, cardiac rhythm, and the ventilatory and CB chemoreceptor afferent responses to hypoxia were assessed in rats with CHF induced by coronary ligation. CHF was associated with enhanced ventilatory and CB afferent responses to hypoxia as well as increased respiratory variability, apnea/hypopnea index, and arrhythmia index. Statin treatment prevented the increases in CBC sensitivity and the concomitant increases in respiratory variability, apnea/hypopnea index, and arrhythmia index. Krüppel-like Factor 2 and endothelial NOS protein were decreased in the CB and nucleus tractus solitarii of CHF animals, and statin treatment increased the expression of these proteins. Our findings demonstrate that the increased CBC sensitivity, respiratory instability, and cardiac arrhythmias observed in CHF are ameliorated by statin treatment and suggest that statins may be an effective treatment for Cheyne–Stokes respiration and arrhythmias in patient populations with high chemoreflex sensitivity.


American Journal of Physiology-cell Physiology | 2013

Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling.

Liang Xiao; Karla K.V. Haack; Irving H. Zucker

Brain ANG II plays an important role in modulating sympathetic function and homeostasis. The generation and degradation of ANG II are carried out, to a large extent, through the angiotensin-converting enzyme (ACE) and ACE2, respectively. In disease states, such as hypertension and chronic heart failure, central expression of ACE is upregulated and ACE2 is decreased in central sympathoregulatory neurons. In this study, we determined the expression of ACE and ACE2 in response to ANG II in a neuronal cell culture and the subsequent signaling mechanism(s) involved. A mouse catecholaminergic neuronal cell line (CATH.a) was treated with ANG II (30, 100, and 300 nM) for 24 h, and protein expression was determined by Western blot analysis. ANG II induced a significant dose-dependent increase in ACE and decrease in ACE2 mRNA and protein expression in CATH.a neurons. This effect was abolished by pretreatment of the cells with the p38 MAPK inhibitor SB-203580 (10 μM) 30 min before administration of ANG II or the ERK1/2 inhibitor U-0126 (10 μM). These data suggest that ANG II increases ACE and attenuates ACE2 expression in neurons via the ANG II type 1 receptor, p38 MAPK, and ERK1/2 signaling pathways.


PLOS ONE | 2013

NF-κB and CREB Are Required for Angiotensin II Type 1 Receptor Upregulation in Neurons

Karla K.V. Haack; Amit K. Mitra; Irving H. Zucker

Nuclear factor kappa B (NF-κB) and the Ets like gene-1 (Elk-1) are two transcription factors that have been previously established to contribute to the Angiotensin II mediated upregulation of Angiotensin II type 1 receptor (AT1R) in neurons. The cAMP response element binding protein (CREB) is another transcription factor that has also been implicated in AT1R gene transcription. The goal of the current study was to determine if NF-κB and CREB association was required for AT1R upregulation. We hypothesized that the transcription of the AT1R gene occurs via an orchestration of transcription factor interactions including NF-κB, CREB, and Elk-1. The synergistic role of CREB and NFκB in promoting AT1R gene expression was determined using siRNA-mediated silencing of CREB. Electrophorectic Mobility Shift Assay studies employing CREB and NF-κB demonstrated increased protein – DNA binding as a result of Ang II stimulation which was blunted by siRNA silencing of CREB. Upstream inhibition of p38 mitogen activated protein kinase (p38 MAPK) with SB203580 or inhibition of the calmodulin kinase (CAMK) pathway using KN-62 blunted changes in CREB and NF-κB expression. These findings suggest that Ang II may activate multiple signaling pathways involving p38 MAPK leading to the activation of NF-κB and CREB, which feed back to upregulate the AT1R gene. This study provides insight into the molecular mechanisms involving multiple transcription factor activation in a coordinated fashion which may be partially responsible for sympathoexcitation in clinical conditions associated with increased activation of the renin angiotensin system.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Unilateral renal denervation improves autonomic balance in conscious rabbits with chronic heart failure.

Alicia M. Schiller; Karla K.V. Haack; Peter R. Pellegrino; Pamela L. Curry; Irving H. Zucker

A hallmark of chronic heart failure (CHF) is an increased sympathetic tone resulting in autonomic imbalance. Renal denervation (DNx) in CHF patients has resulted in symptomatic improvement, but the protective mechanisms remain unclear. We hypothesized in CHF, unilateral renal DNx would improve cardiac autonomic balance. The present study used conscious, chronically instrumented New Zealand White rabbits undergoing renal DNx prior to pacing-induced CHF. Four treatment groups were used: nonpace, non-DNx [Sham-Innervated (Sham-INV)], nonpace DNx (sham-DNx), pace non-DNx (CHF-INV) or pace DNx (CHF-DNx). We examined several markers indicative of autonomic balance. Baroreflex sensitivity and time domain heart rate variability (HRV) were both decreased in the CHF-INV group compared with sham-INV and were restored to sham levels by renal DNx. Power spectral analysis indicated an increase in low-frequency/high-frequency (LF/HF) ratio in the CHF-INV compared with the sham-INV, which was normalized to sham levels by DNx. To assess whether this was due to a withdrawal of sympathetic tone or an increase in parasympathetic tone, the heart rate response was measured after an intravenous bolus of metoprolol or atropine. Bradycardia induced by intravenous metoprolol (indicative of cardiac sympathetic tone) was exacerbated in CHF-INV rabbits compared with sham-INV but was normalized in CHF-DNx. Conversely, the tachycardia in response to intravenous atropine (indicative of cardiac vagal tone) was not improved in CHF-DNx vs. CHF-INV animals. Renal DNx also prevented the increase in circulating plasma NE seen in CHF-INV rabbits. These results suggest renal DNx improves cardiac autonomic balance in CHF by a reduction of sympathetic tone.


Hypertension | 2013

Central Rho Kinase Inhibition Restores Baroreflex Sensitivity and Angiotensin II Type 1 Receptor Protein Imbalance in Conscious Rabbits With Chronic Heart Failure

Karla K.V. Haack; Lie Gao; Alicia M. Schiller; Pamela L. Curry; Peter R. Pellegrino; Irving H. Zucker

The small GTPase RhoA and its associated kinase ROCKII are involved in vascular smooth muscle cell contraction and endothelial NO synthase mRNA destabilization. Overactivation of the RhoA/ROCKII pathway is implicated in several pathologies, including chronic heart failure (CHF), and may contribute to the enhanced sympathetic outflow seen in CHF as a result of decreased NO availability. Thus, we hypothesized that central ROCKII blockade would improve the sympathovagal imbalance in a pacing rabbit model of CHF in an NO-dependent manner. CHF was induced by rapid ventricular pacing and characterized by an ejection fraction of ⩽45%. Animals were implanted with an intracerbroventricular cannula and osmotic minipump (rate, 1 &mgr;L/h) containing sterile saline, 1.5 µg/kg per day fasudil (Fas, a ROCKII inhibitor) for 4 days or Fas+100 µg/kg per day N&ohgr;-Nitro-L-arginine methyl ester hydrochloride, a NO synthase inhibitor. Arterial baroreflex control was assessed by intravenous infusion of sodium nitroprusside and phenylephrine. Fas infusion significantly lowered resting heart rate by decreasing sympathetic and increasing vagal tone. Furthermore, Fas improved baroreflex gain in CHF in an NO-dependent manner. In CHF Fas animals, the decrease in heart rate in response to intravenous metoprolol was similar to Sham and was reversed by N&ohgr;-Nitro-L-arginine methyl ester hydrochloride. Fas decreased angiotensin II type 1 receptor and phospho-ERM protein expression and increased endothelial NO synthase expression in the brain stem of CHF animals. These data strongly suggest that central ROCKII activation contributes to cardiac sympathoexcitation in the setting of CHF and that central Fas restores vagal and sympathetic tone in an NO-dependent manner. ROCKII may be a new central therapeutic target in the setting of CHF.


Autonomic Neuroscience: Basic and Clinical | 2015

Central mechanisms for exercise training-induced reduction in sympatho-excitation in chronic heart failure.

Karla K.V. Haack; Irving H. Zucker

The control of sympathetic outflow in the chronic heart failure (CHF) state is markedly abnormal. Patients with heart failure present with increased plasma norepinephrine and increased sympathetic nerve activity. The mechanism for this sympatho-excitation is multiple and varied. Both depression in negative feedback sensory control mechanisms and augmentation of excitatory reflexes contribute to this sympatho-excitation. These include the arterial baroreflex, cardiac reflexes, arterial chemoreflexes and cardiac sympathetic afferent reflexes. In addition, abnormalities in central signaling in autonomic pathways have been implicated in the sympatho-excitatory process in CHF. These mechanisms include increases in central Angiotensin II and the Type 1 receptor, increased in reactive oxygen stress, upregulation in glutamate signaling and NR1 (N-methyl-D-aspartate subtype 1) receptors and others. Exercise training in the CHF state has been shown to reduce sympathetic outflow and result in increased survival and reduced cardiac events. Exercise training has been shown to reduce central Angiotensin II signaling including the Type 1 receptor and reduce oxidative stress by lowering the expression of many of the subunits of NADPH oxidase. In addition, there are profound effects on the central generation of nitric oxide and nitric oxide synthase in sympatho-regulatory areas of the brain. Recent studies have pointed to the balance between Angiotensin Converting Enzyme (ACE) and ACE2, translating into Angiotensin II and Angiotensin 1-7 as important regulators of sympathetic outflow. These enzymes appear to be normalized following exercise training in CHF. Understanding the precise molecular mechanisms by which exercise training is sympatho-inhibitory will uncover new targets for therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Identification of RL-TGR, a coreceptor involved in aversive chemical signaling

Staci P. Cohen; Karla K.V. Haack; Gwyneth E. Halstead-Nussloch; Karen F. Bernard; Hanns Hatt; Julia Kubanek; Nael A. McCarty

Chemical signaling plays an important role in predator–prey interactions and feeding dynamics. Like other organisms that are sessile or slow moving, some marine sponges contain aversive compounds that defend these organisms from predation. We sought to identify and characterize a fish chemoreceptor that detects one of these compounds. Using expression cloning in Xenopus oocytes coexpressing the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, the beta-2 adrenergic receptor (β2AR), and fractions of a zebrafish cDNA library, we isolated a cDNA clone encoding receptor activity–modifying protein (RAMP)-like triterpene glycoside receptor (RL-TGR), a novel coreceptor involved in signaling in response to triterpene glycosides. This coreceptor appears to be structurally and functionally related to RAMPs, a family of coreceptors that physically associate with and modify the activity of G protein–coupled receptors (GPCRs). In membranes from formoside-responsive oocytes, RL-TGR was immunoprecipitated in an apparent complex with β2AR. In HEK293 cells, coexpression of β2AR induced the trafficking of RL-TGR from the cytoplasm to the plasma membrane. These results suggest that RL-TGR in the predatory fish physically associates with the β2AR or another, more physiologically relevant GPCR and modifies its pharmacology to respond to triterpene glycosides found in sponges that serve as a potential food source for the fish. RL-TGR forms a coreceptor that responds to a chemical defense compound in the marine environment, and its discovery might lead the way to the identification of other receptors that mediate chemical defense signaling.


Pharmaceuticals | 2011

Functional Consequences of GPCR Heterodimerization: GPCRs as Allosteric Modulators

Karla K.V. Haack; Nael A. McCarty

G Protein Coupled Receptors (GPCRs) represent the largest family of membrane proteins in the human genome, are the targets of approximately 25% of all marketed pharmaceuticals, and the focus of intensive research worldwide given that this superfamily of receptors is as varied in function as it is ubiquitously expressed among all cell types. Increasing evidence has shown that the classical two part model of GPCR signaling (one GPCR, one type of heterotrimeric G protein) is grossly oversimplified as many GPCRs can couple to more than one type of G protein, each subunit of the heterotrimeric G protein can activate different downstream effectors, and, surprisingly, other GPCRs can affect receptor behavior in G protein-independent ways. The concept of GPCR heterodimerization, or the physical association of two different types of GPCRs, presents an unexpected mechanism for GPCR regulation and function, and provides a novel target for pharmaceuticals. Here we present a synopsis of the functional consequences of GPCR heterodimerization in both in vitro and in vivo studies, focusing on the concept of GPCRs as allosteric modulators. Typically, an allosteric modulator is a ligand or molecule that alters a receptors innate functional properties, but here we propose that in the case of GPCR heterodimers, it is the physical coupling of two receptors that leads to changes in cognate receptor signaling.

Collaboration


Dive into the Karla K.V. Haack's collaboration.

Top Co-Authors

Avatar

Irving H. Zucker

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alicia M. Schiller

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pamela L. Curry

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter R. Pellegrino

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lie Gao

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Liang Xiao

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan K. Becker

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Christopher William Engler

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Amanda Harlow

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge