Karol Załęski
Adam Mickiewicz University in Poznań
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karol Załęski.
RSC Advances | 2014
Luis Yate; L. Emerson Coy; Guocheng Wang; Mikel Beltrán; Enrique Díaz-Barriga; Esmeralda M. Saucedo; Mónica A. Ceniceros; Karol Załęski; Irantzu Llarena; Marco Möller; Ronald F. Ziolo
Flexible NbC nanocomposite thin films with carbon content ranging from 0 to 99 at.% were deposited at room temperature on Si (100) and polystyrene substrates by non-reactive magnetron sputtering from pure Nb and C targets without applying bias voltage to the substrates. HRTEM images reveal that the films exhibit a nanocomposite structure consisting of NbC nanocrystals (2 to 15 nm in size) embedded in an amorphous carbon matrix. By simply adjusting the Nb flux in the plasma, we can monitor the nanocrystal size and the percent of free-carbon phase in the films, which in turn allows for the tailoring of both mechanical properties and electrical conductivity of the films. It was found that the films composed of ∼8–10% free-carbon exhibited a relatively high hardness and elastic recovery, around 23 GPa and 85%, respectively, and an electrical conductivity of 2.2 × 106 S m−1 at 22 °C. This study indicates the potential of this non-reactive sputtering approach in depositing hard, elastic and electrically conductive nanocomposite films at low temperatures, which is especially useful for preparation of films on temperature sensitive polymers or plastic substrates for nano- and micro- electronics applications.
Materials Science and Engineering: C | 2015
Olena Ivashchenko; Mikolaj Lewandowski; Barbara Peplińska; Marcin Jarek; Grzegorz Nowaczyk; Maciej Wiesner; Karol Załęski; Tetyana Babutina; Alicja Warowicka; Stefan Jurga
The article is devoted to preparation and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy. Magnetite nanopowder was produced by thermochemical technique; silver was deposited on the magnetite nanoparticles in the form of silver clusters. Magnetite/silver nanocomposite was investigated by XRD, SEM, TEM, AFM, XPS, EDX techniques. Adsorptivity of magnetite/silver nanocomposite towards seven antibiotics from five different groups was investigated. It was shown that rifampicin, doxycycline, ceftriaxone, cefotaxime and doxycycline may be attached by physical adsorption to magnetite/silver nanocomposite. Electrostatic surfaces of antibiotics were modeled and possible mechanism of antibiotic attachment is considered in this article. Raman spectra of magnetite, magnetite/silver and magnetite/silver/antibiotic were collected. It was found that it is difficult to detect the bands related to antibiotics in the magnetite/silver/antibiotic nanocomposite spectra due to their overlap by the broad carbon bands of magnetite nanopowder. Magnetic measurements revealed that magnetic saturation of the magnetite/silver/antibiotic nanocomposites decreased on 6-19 % in comparison with initial magnetite nanopowder. Pilot study of antimicrobial properties of the magnetite/silver/antibiotic nanocomposites were performed towards Bacillus pumilus.
Nanotechnology | 2016
Elżbieta Robak; Emerson Coy; Michał Kotkowiak; Stefan Jurga; Karol Załęski; Henryk Drozdowski
Zinc oxide (ZnO) is a wide-bandgap semiconductor material with applications in a variety of fields such as electronics, optoelectronic and solar cells. However, much of these applications demand a reproducible, reliable and controllable synthesis method that takes special care of their functional properties. In this work ZnO and Cu-doped ZnO nanowires are obtained by an optimized hydrothermal method, following the promising results which ZnO nanostructures have shown in the past few years. The morphology of as-prepared and copper-doped ZnO nanostructures is investigated by means of scanning electron microscopy and high resolution transmission electron microscopy. X-ray diffraction is used to study the impact of doping on the crystalline structure of the wires. Furthermore, the mechanical properties (nanoindentation) and the functional properties (absorption and photoluminescence measurements) of ZnO nanostructures are examined in order to assess their applicability in photovoltaics, piezoelectric and hybrids nanodevices. This work shows a strong correlation between growing conditions, morphology, doping and mechanical as well as optical properties of ZnO nanowires.
RSC Advances | 2016
Mykolai Pavlenko; Emerson Coy; Mariusz Jancelewicz; Karol Załęski; Valentyn Smyntyna; Stefan Jurga; Igor Iatsunskyi
The mechanical and optical properties of Si and TiO2–Si nanopillars (NPl) were investigated. Mesoporous silicon NPl arrays were fabricated by metal-assisted chemical etching and nanosphere lithography, and then pillars were covered by TiO2 using the atomic layer deposition technique. We performed scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, reflectance, photoluminescence (PL) spectroscopy and nanoindentation to characterize the as-prepared and annealed TiO2–Si NPl. The main structural and mechanical parameters of TiO2–Si NPl (grain size, strain, critical load, elastic recovery and Youngs module) were calculated. Reflectance and PL spectroscopy were used to study the impact of morphology on optical properties of TiO2–Si NPl before and after annealing. It was established that the nanostructures of TiO2 penetrated inside the porous matrix of Si pillar improve the mechanical properties of TiO2–Si NPl. The results of nanoindentation study have shown that Youngs modulus of annealed TiO2–Si NPl is about three times higher than for the pure Si NPl.
Nanotechnology | 2017
Olena Ivashchenko; Emerson Coy; Barbara Peplińska; Marcin Jarek; Mikolaj Lewandowski; Karol Załęski; Alicja Warowicka; Anna Wozniak; Tatiana Babutina; Justyna Jurga-Stopa; J. Dolinšek; Stefan Jurga
Magnetite nanoparticles (NPs) decorated with silver (magnetite/Ag) are intensively investigated due to their application in the biomedical field. We demonstrate that the increase of silver content on the surface of nanoparticles improves the adsorptivity of antibiotic rifampicin as well as antibacterial properties. The use of ginger extract allowed to improve the silver nucleation on the magnetite surface that resulted in an increase of silver content. Physicochemical and functional characterization of magnetite/Ag NPs was performed. Our results show that 5%-10% of silver content in magnetite/Ag NPs is already sufficient for antimicrobial properties against Streptococcus salivarius and Staphylococcus aureus. The rifampicin molecules on the magnetite/Ag NPs surface made the spectrum of antimicrobial activity wider. Cytotoxicity evaluation of the magnetite/Ag/rifampicin NPs showed no harmful action towards normal human fibroblasts, whereas the effect on human embryonic kidney cell viability was time and dose dependent.
Toxicology in Vitro | 2017
Anna Woźniak; Magdalena Walawender; Dominika Tempka; Emerson Coy; Karol Załęski; Bartosz F. Grześkowiak; Radosław Mrówczyński
Synthesis of magnetic nanoparticles and magnetic nanoclusters was performed by the co-precipitation method or solvothermal synthesis, respectively, followed by oxidative polymerization of dopamine, resulting in a polydopamine (PDA) shell. The nanomaterials obtained were described using TEM, FTIR and magnetic measurements. For the first time, cyto- and genotoxicity studies of polydopamine-coated nanostructures were performed on cancer and normal cell lines, providing in-depth insight into the toxicity of such materials. The tests conducted, e.g. ROS, apoptosis and DNA double-break of the nanomaterials obtained revealed the low toxicity of these structures. Thus, these results prove the biocompatibility and low genotoxicity of these materials and provide new data on the toxicity of PDA-coated materials, which is of great importance for their biomedical application.
Central European Journal of Physics | 2011
Karol Załęski; J. Dubowik; Iwona Gościańska; B. Andrzejewski; T. Toliński
In this paper we report structural, magnetic and transport properties of strongly textured Ni51Mn36Sn13 thin films. The off-stoichiometric Heusler alloy films with 200 nm thickness were sputter-deposited on a MgO(100) substrate at 500 K and after annealed at 1000 K in UHV conditions. The textured growth was confirmed by x-ray diffraction in Bragg-Brentano geometry. The temperature dependence of the magnetic properties was measured by VSM and FMR methods. The electron transport measurements were carried out in function of temperature in 0 Oe and 50 kOe fields. All measurements corroborate the existence of the martensitic transformation in the film. Furthermore, transport measurements reveal an influence of the magnetic field on the transition temperature.
Scientific Reports | 2018
Olena Ivashchenko; Barbara Peplińska; Jacek Gapiński; Dorota Flak; Marcin Jarek; Karol Załęski; Grzegorz Nowaczyk; Zuzanna Pietralik; Stefan Jurga
Micro/nanostructures, which are assembled from various nanosized building blocks are of great scientific interests due to their combined features in the micro- and nanometer scale. This study for the first time demonstrates that ultrasmall superparamagnetic iron oxide nanoparticles can change the microstructure of their hydrocolloids under the action of external magnetic field. We aimed also at the establishment of the physiological temperature (39 °C) influence on the self-organization of silver and ultrasmall iron oxides nanoparticles (NPs) in hydrocolloids. Consequences of such induced changes were further investigated in terms of their potential effect on the biological activity in vitro. Physicochemical characterization included X-ray diffraction (XRD), optical microscopies (SEM, cryo-SEM, TEM, fluorescence), dynamic light scattering (DLS) techniques, energy dispersive (EDS), Fourier transform infrared (FTIR) and ultraviolet–visible (UV-Vis) spectroscopies, zeta-potential and magnetic measurements. The results showed that magnetic field affected the hydrocolloids microstructure uniformity, fluorescence properties and photodynamic activity. Likewise, increased temperature caused changes in NPs hydrodynamic size distribution and in hydrocolloids microstructure. Magnetic field significantly improved photodynamic activity that was attributed to enhanced generation of reactive oxygen species due to reorganization of the microstructure.
Beilstein Journal of Nanotechnology | 2018
Błażej Scheibe; Radosław Mrówczyński; N. Michalak; Karol Załęski; Michał Matczak; Mateusz Kempiński; Zuzanna Pietralik; Mikolaj Lewandowski; Stefan Jurga; F. Stobiecki
Reduced graphene oxide–magnetite hybrid aerogels attract great interest thanks to their potential applications, e.g., as magnetic actuators. However, the tendency of magnetite particles to migrate within the matrix and, ultimately, escape from the aerogel structure, remains a technological challenge. In this article we show that coating magnetite particles with polydopamine anchors them on graphene oxide defects, immobilizing the particles in the matrix and, at the same time, improving the aerogel structure. Polydopamine coating does not affect the magnetic properties of magnetite particles, making the fabricated materials promising for industrial applications.
Applied Physics Letters | 2017
A. Krysztofik; L.E. Coy; Piotr Kuświk; Karol Załęski; Hubert Głowiński; J. Dubowik
We show that using maskless photolithography and the lift-off technique, patterned yttrium iron garnet thin films possessing ultra-low Gilbert damping can be accomplished. The films of 70 nm thickness were grown on (001)-oriented gadolinium gallium garnet by means of pulsed laser deposition, and they exhibit high crystalline quality, low surface roughness, and the effective magnetization of 127 emu/cm3. The Gilbert damping parameter is as low as 5×10−4. The obtained structures have well-defined sharp edges which along with good structural and magnetic film properties pave a path in the fabrication of high-quality magnonic circuits and oxide-based spintronic devices.