Karol Życzkowski
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karol Życzkowski.
Physical Review Letters | 2013
Samuel L. Braunstein; Stefano Pirandola; Karol Życzkowski
We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior generically describes the unitary evaporation of highly entangled black holes and requires no specially designed evolution. Our work suggests the existence of a matter-field sum rule for any fundamental theory.
International Journal of Quantum Information | 2010
Thomas Durt; Berthold-Georg Englert; Ingemar Bengtsson; Karol Życzkowski
Mutually unbiased bases for quantum degrees of freedom are central to all theoretical investigations and practical exploitations of complementary properties. Much is known about mutually unbiased bases, but there are also a fair number of important questions that have not been answered in full as yet. In particular, one can find maximal sets of N + 1 mutually unbiased bases in Hilbert spaces of prime-power dimension N = pM, with p prime and M a positive integer, and there is a continuum of mutually unbiased bases for a continuous degree of freedom, such as motion along a line. But not a single example of a maximal set is known if the dimension is another composite number (N = 6, 10, 12,…). In this review, we present a unified approach in which the basis states are labeled by numbers 0, 1, 2, …, N - 1 that are both elements of a Galois field and ordinary integers. This dual nature permits a compact systematic construction of maximal sets of mutually unbiased bases when they are known to exist but throws no light on the open existence problem in other cases. We show how to use the thus constructed mutually unbiased bases in quantum-informatics applications, including dense coding, teleportation, entanglement swapping, covariant cloning, and state tomography, all of which rely on an explicit set of maximally entangled states (generalizations of the familiar two–q-bit Bell states) that are related to the mutually unbiased bases. There is a link to the mathematics of finite affine planes. We also exploit the one-to-one correspondence between unbiased bases and the complex Hadamard matrices that turn the bases into each other. The ultimate hope, not yet fulfilled, is that open questions about mutually unbiased bases can be related to open questions about Hadamard matrices or affine planes, in particular the notorious existence problem for dimensions that are not a power of a prime. The Hadamard-matrix approach is instrumental in the very recent advance, surveyed here, of our understanding of the N = 6 situation. All evidence indicates that a maximal set of seven mutually unbiased bases does not exist — one can find no more than three pairwise unbiased bases — although there is currently no clear-cut demonstration of the case.
Open Systems & Information Dynamics | 2006
Wojciech Tadej; Karol Życzkowski
Complex Hadamard matrices, consisting of unimodular entries with arbitrary phases, play an important role in the theory of quantum information. We review basic properties of complex Hadamard matrices and present a catalogue of inequivalent cases known for the dimensions N = 2,..., 16. In particular, we explicitly write down some families of complex Hadamard matrices for N = 12,14 and 16, which we could not find in the existing literature.
Open Systems & Information Dynamics | 2003
Karol Życzkowski
Relations between Shannon entropy and Rényi entropies of integer order are discussed. For any N-point discrete probability distribution for which the Rényi entropies of order two and three are known, we provide a lower and an upper bound for the Shannon entropy. The average of both bounds provide an explicit extrapolation for this quantity. These results imply relations between the von Neumann entropy of a mixed quantum state, its linear entropy and traces.
international symposium on physical design | 2001
Eric M. Bollt; Theodore Stanford; Karol Życzkowski; Ying Cheng Lai
Abstract An increasingly popular method of encoding chaotic time-series from physical experiments is the so-called threshold crossings technique, where one simply replaces the real valued data with symbolic data of relative positions to an arbitrary partition at discrete times. The implication has been that this symbolic encoding describes the original dynamical system. On the other hand, the literature on generating partitions of non-hyperbolic dynamical systems has shown that a good partition is non-trivial to find. It is believed that the generating partition of non-uniformly hyperbolic dynamical system connects “primary tangencies”, which are generally not simple lines as used by a threshold crossings. Therefore, we investigate consequences of using itineraries generated by a non-generating partition. We do most of our rigorous analysis using the tent map as a benchmark example, but show numerically that our results likely generalize. In summary, we find the misrepresentation of the dynamical system by “sample-path” symbolic dynamics of an arbitrary partition can be severe, including (sometimes extremely) diminished topological entropy, and a high degree of non-uniqueness. Interestingly, we find topological entropy as a function of misplacement to be devil’s staircase-like, but surprisingly non-monotone.
Journal of Mathematical Physics | 2007
Ingemar Bengtsson; Wojciech Bruzda; Åsa Ericsson; Jan-Åke Larsson; Wojciech Tadej; Karol Życzkowski
We report on a search for mutually unbiased bases (MUBs) in six dimensions. We find only triplets of MUBs, and thus do not come close to the theoretical upper bound 7. However, we point out that the natural habitat for sets of MUBs is the set of all complex Hadamard matrices of the given order, and we introduce a natural notion of distance between bases in Hilbert space. This allows us to draw a detailed map of where in the landscape the MUB triplets are situated. We use available tools, such as the theory of the discrete Fourier transform, to organize our results. Finally, we present some evidence for the conjecture that there exists a four dimensional family of complex Hadamard matrices of order 6. If this conjecture is true the landscape in which one may search for MUBs is much larger than previously thought.
Reports on Mathematical Physics | 2006
Man-Duen Choi; David W. Kribs; Karol Życzkowski
We solve the fundamental quantum error correction problem for bi-unitary channels on two-qubit Hilbert space. By solving an algebraic compression problem, we construct qubit codes for such channels on arbitrary dimension Hilbert space, and identify correctable codes for Pauli-error models not obtained by the stabilizer formalism. This is accomplished through an application of a new tool for error correction in quantum computing called the “higher-rank numerical range”. We describe its basic properties and discuss possible further applications.
Journal of Physics A | 2013
Zbigniew Puchała; Łukasz Rudnicki; Karol Życzkowski
Entropic uncertainty relations in a finite-dimensional Hilbert space are investigated. Making use of the majorization technique we derive explicit lower bounds for the sum of R´ enyi entropies describing probability distributions associated with a given pure state expanded in eigenbases of two observables. Obtained bounds are expressed in terms of the largest singular values of submatrices of the unitary rotation matrix. Numerical simulations show that for a generic unitary matrix of size N = 5, our bound is stronger than the well- known result of Maassen and Uffink (MU) with a probability larger than 98%. We also show that the bounds investigated are invariant under the dephasing and permutation operations. Finally, we derive a classical analogue of the MU uncertainty relation, which is formulated for stochastic transition matrices.
Physical Review A | 2014
Łukasz Rudnicki; Zbigniew Puchała; Karol Życzkowski
We analyze entropic uncertainty relations in a finite-dimensional Hilbert space and derive several strong bounds for the sum of two entropies obtained in projective measurements with respect to any two orthogonal bases. We improve the recent bounds by Coles and Piani [P. Coles and M. Piani, Phys. Rev. A 89, 022112 (2014)], which are known to be stronger than the well-known result of Maassen and Uffink [H. Maassen and J. B. M. Uffink, Phys. Rev. Lett. 60, 1103 (1988)]. Furthermore, we find a bound based on majorization techniques, which also happens to be stronger than the recent results involving the largest singular values of submatrices of the unitary matrix connecting both bases. The first set of bounds gives better results for unitary matrices close to the Fourier matrix, while the second one provides a significant improvement in the opposite sectors. Some results derived admit generalization to arbitrary mixed states, so that corresponding bounds are increased by the von Neumann entropy of the measured state. The majorization approach is finally extended to the case of several measurements.
Journal of Mathematical Physics | 2009
Łukasz Skowronek; Erling Størmer; Karol Życzkowski
The structure of cones of positive and k-positive maps acting on a finite-dimensional Hilbert space is investigated. Special emphasis is given to their duality relations to the sets of superpositive and k-superpositive maps. We characterize k-positive and k-superpositive maps with regard to their properties under taking compositions. A number of results obtained for maps are also rephrased for the corresponding cones of block positive, k-block positive, separable, and k-entangled operators due to the Jamiolkowski–Choi isomorphism. Generalizations to a situation where no such simple isomorphism is available are also made, employing the idea of mapping cones. As a side result to our discussion, we show that extreme entanglement witnesses, which are optimal, should be of special interest in entanglement studies.