Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karola Lützow is active.

Publication


Featured researches published by Karola Lützow.


Stem Cells | 2007

Bcl‐2 Engineered MSCs Inhibited Apoptosis and Improved Heart Function

Wenzhong Li; Nan Ma; Lee-Lee Ong; Catharina Nesselmann; Christian Klopsch; Yury Ladilov; Dario Furlani; Christoph Piechaczek; Jeannette M. Moebius; Karola Lützow; Andreas Lendlein; Christof Stamm; Ren-Ke Li; Gustav Steinhoff

Engraftment of mesenchymal stem cells (MSCs) derived from adult bone marrow has been proposed as a potential therapeutic approach for postinfarction left ventricular dysfunction. However, limited cell viability after transplantation into the myocardium has restricted its regenerative capacity. In this study, we genetically modified MSCs with an antiapoptotic Bcl‐2 gene and evaluated cell survival, engraftment, revascularization, and functional improvement in a rat left anterior descending ligation model via intracardiac injection. Rat MSCs were manipulated to overexpress the Bcl‐2 gene. In vitro, the antiapoptotic and paracrine effects were assessed under hypoxic conditions. In vivo, the Bcl‐2 gene‐modified MSCs (Bcl‐2‐MSCs) were injected after myocardial infarction. The surviving cells were tracked after transplantation. Capillary density was quantified after 3 weeks. The left ventricular function was evaluated by pressure‐volume loops. The Bcl‐2 gene protected MSCs against apoptosis. In vitro, Bcl‐2 overexpression reduced MSC apoptosis by 32% and enhanced vascular endothelial growth factor secretion by more than 60% under hypoxic conditions. Transplantation with Bcl‐2‐MSCs increased 2.2‐fold, 1.9‐fold, and 1.2‐fold of the cellular survival at 4 days, 3 weeks, and 6 weeks, respectively, compared with the vector‐MSC group. Capillary density in the infarct border zone was 15% higher in Bcl‐2‐MSC transplanted animals than in vector‐MSC treated animals. Furthermore, Bcl‐2‐MSC transplanted animals had 17% smaller infarct size than vector‐MSC treated animals and exhibited functional recovery remarkably. Our current findings support the premise that transplantation of antiapoptotic gene‐modified MSCs may have values for mediating substantial functional recovery after acute myocardial infarction.


Journal of Gene Medicine | 2008

Enhanced thoracic gene delivery by magnetic nanobead-mediated vector

Wenzhong Li; Nan Ma; Lee-Lee Ong; Alexander Kaminski; Christian Skrabal; Murat Ugurlucan; Peter Lorenz; Hans-Heinrich Gatzen; Karola Lützow; Andreas Lendlein; Brigitte M. Pützer; Ren-Ke Li; Gustav Steinhoff

Systemic gene delivery is limited by the adverse hydrodynamic conditions on the collection of gene carrier particles to the specific area. In the present study, a magnetic field was employed to guide magnetic nanobead (MNB)/polymer/DNA complexes after systemic administration to the left side of the mouse thorax in order to induce localized gene expression.


Journal of Cellular and Molecular Medicine | 2011

Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients

Weiwei Wang; Wenzhong Li; Lailiang Ou; Eva Flick; Peter Mark; Catharina Nesselmann; Cornelia A. Lux; Hans-Heinrich Gatzen; Alexander Kaminski; Andreas Liebold; Karola Lützow; Andreas Lendlein; Ren-Ke Li; Gustav Steinhoff; Nan Ma

Transplantation of mesenchymal stem cells (MSCs) derived from adult bone marrow has been proposed as a potential therapeutic approach for post‐infarction left ventricular (LV) dysfunction. However, age‐related functional decline of stem cells has restricted their clinical benefits after transplantation into the infarcted myocardium. The limitations imposed on patient cells could be addressed by genetic modification of stem cells. This study was designed to improve our understanding of genetic modification of human bone marrow derived mesenchymal stem cells (hMSCs) by polyethylenimine (PEI, branched with Mw 25 kD), one of non‐viral vectors that show promise in stem cell genetic modification, in the context of cardiac regeneration for patients. We optimized the PEI‐mediated reporter gene transfection into hMSCs, evaluated whether transfection efficiency is associated with gender or age of the cell donors, analysed the influence of cell cycle on transfection and investigated the transfer of therapeutic vascular endothelial growth factor gene (VEGF). hMSCs were isolated from patients with cardiovascular disease aged from 41 to 85 years. Optimization of gene delivery to hMSCs was carried out based on the particle size of the PEI/DNA complexes, N/P ratio of complexes, DNA dosage and cell viability. The highest efficiency with the cell viability near 60% was achieved at N/P ratio 2 and 6.0 μg DNA/cm2. The average transfection efficiency for all tested samples, middle‐age group (<65 years), old‐age group (>65 years), female group and male group was 4.32%, 3.85%, 4.52%, 4.14% and 4.38%, respectively. The transfection efficiency did not show any correlation either with the age or the gender of the donors. Statistically, there were two subpopulations in the donors; and transfection efficiency in each subpopulation was linearly related to the cell percentage in S phase. No significant phenotypic differences were observed between these two subpopulations. Furthermore, PEI‐mediated therapeutic gene VEGF transfer could significantly enhance the expression level.


Biomaterials | 1999

Functionalized nanoparticles for endotoxin binding in aqueous solutions

R. Darkow; Th. Groth; Wolfgang Albrecht; Karola Lützow; David L. Paul

Nanoparticles consisting of a polystyrene core and a polyglycidyl methacrylate shell were prepared by a two-step emulsion polymerization. The size and surface properties of the particles were characterized by scanning electron microscopy, dynamic light scattering and polyelectrolyte titration techniques. Particles were found to be monodisperse with a mean diameter of about 85 nm. Parent particles were modified with a number of different ligands including diamines of increasing chain length, amino acids and corresponding amines and higher molecular weight ligands like polymyxin B. The modified particles were tested for their endotoxin (ET) binding capacity in water and physiological sodium chloride solution with the Limulus amebocyte lysate (LAL) assay. It was found that the ET binding properties of the different ligands depend both on the ability of the ligand to form Coulomb- and van der Waals-interactions with the ET molecule influenced by the nature of the suspension medium. Therefore, the choice of ligands for particle modification has to consider minutely the conditions under which ET has to be removed, e.g. removal from pure water, dialysis fluids, plasma or blood.


Journal of Biotechnology | 2010

Cytocompatibility testing of cell culture modules fabricated from specific candidate biomaterials using injection molding

B. Hiebl; Karola Lützow; Maik Lange; F. Jung; Barbara Seifert; Frank Klein; Thomas Weigel; Karl Kratz; Andreas Lendlein

Most polymers used in clinical applications today are materials that have been developed originally for application areas other than biomedicine. Testing the cell- and tissue-compatibility of novel materials in vitro and in vivo is of key importance for the approval of medical devices and is regulated according to the Council Directive 93/42/EEC of the European communities concerning medical devices. In the standardized testing methods the testing sample is placed in commercially available cell culture plates, which are often made from polystyrene. Thus not only the testing sample itself influences cell behavior but also the culture vessel material. In order to exclude this influence, a new system for cell testing will be presented allowing a more precise and systematic investigation by preparing tailored inserts which are made of the testing material. Inserts prepared from polystyrene, polycarbonate and poly(ether imide) were tested for their cytotoxity and cell adherence. Furthermore a proof of principle concerning the preparation of inserts with a membrane-like surface structure and its surface modification was established. Physicochemical investigations revealed a similar morphology and showed to be very similar to the findings to analogous preparations and modifications of flat-sheet membranes.


Transplantation Proceedings | 2008

Intracardiac Erythropoietin Injection Reveals Antiinflammatory Potential and Improved Cardiac Functions Detected by Forced Swim Test

Dario Furlani; Christian Klopsch; Ralf Gäbel; Murat Ugurlucan; Erik Pittermann; Doris Klee; K. Wagner; Wenzhong Li; Weiwei Wang; Lee-Lee Ong; H. Nizze; Ulf Titze; Karola Lützow; Andreas Lendlein; Gustav Steinhoff; Nan Ma

Systemic administration of erythropoietin (Epo) protects the myocardium from an ischemic insult and promotes beneficial remodeling. We hypothesized that intracardiac injection of Epo may exhibit cardioprotective potential with reduced systemic toxicity. Following myocardial infarction (MI), Epo was injected directly into the border of the infarction. Six weeks after an MI, we evaluated infarction size, angiogenesis, and pathologic effects of the treatment. Myocardial performance was assessed with a Forced Swim Test adapted to the study. Anti-inflammatory and cellular proliferative effects of Epo were analyzed by measuring expression of integrin-beta and CdK4 by reverse transcriptase-polymerase chain reaction (RT-PCR). The findings indicated improved cardiac status with direct Epo administration. Exercise capacity detected by the Forced Swim Test was significantly increased. There was radical reduction of absolute infarction size, ventricular dilatation, and hypertrophy in the Epo group. Integrin-beta was down-regulated and CdK4 expression was increased significantly with Epo. In conclusion, the study demonstrated that intramyocardial Epo injection, following MI, reduced inflammation, enhanced angiogenesis and proliferation, improved myocardial functions, and did not lead to intramural thrombus formation.


Journal of Cellular and Molecular Medicine | 2010

Localized SDF-1alpha gene release mediated by collagen substrate induces CD117 stem cells homing.

Weiwei Wang; Wenzhong Li; Lee-Lee Ong; Dario Furlani; Alexander Kaminski; Andreas Liebold; Karola Lützow; Andreas Lendlein; Jun Wang; Ren-Ke Li; Gustav Steinhoff; Nan Ma

Stromal cell‐derived factor‐1α (SDF‐1α) mediated mobilization and homing of stem cells showed promising potential in stem cell based tissue engineering and regenerative medicine. However local and sustained release of SDF‐1α is indispensable for stem cell mediated regenerative process due to its short half‐life under inflammatory conditions. In this study, a gene activated collagen substrate (GAC) was formed via assembly of plasmid encoding SDF‐1α into a collagen substrate to create a microenvironment favoring stem cell homing. Local release of SDF‐1α from the transfected cells on GAC and its effect on CD117+ stem cell homing were investigated. Non‐viral poly‐ethyleneimine (25kDa PEI)/DNA complexes were mixed with rat tail collagen solution to form the GAC. Optimization of GAC was carried out based on collagen effects on the PEI/DNA complexes, viability and luciferase expression of COS7 cells on GAC. CD117+ stem cells homing in response to SDF‐1α local expression from transfected cells on GAC were investigated in a flow chamber in vitro and in a mouse hind limb model in vivo. The gene expression, migration of CD117+ stem cells and the induced inflammation were investigated with immunostaining, reverse transcription polymerase chain reaction (RT‐PCR) and H&E staining. The optimized parameters for GAC were DNA dosage 10 μg/cm2, molar ratio of PEI nitrogen in primary amine to DNA phosphate (N/P ratio) 4 and mass ratio of collagen to DNA (C/D ratio) 1.0. It kept cell viability above 75% and transfection efficiency around 5.8 × 105 RLU/mg protein. GAC allowed the sustained gene release up to 60 days. GAC mediated SDF‐1α gene release induced migration and homing of CD117+ stem cells in vitro and in vivo significantly, and the inflammation of GAC reduced significantly two weeks after transplantation. GAC is a promising stem cell based therapeutic strategy for regenerative medicine.


Clinical Hemorheology and Microcirculation | 2010

Interaction of thrombocytes with poly(ether imide): The influence of processing

Steffen Braune; Maik Lange; Klaus Richau; Karola Lützow; Thomas Weigel; F. Jung; Andreas Lendlein

The processing of polymers for blood contacting devices can have a major influence on surface properties. In this study, we fabricated poly(ether imide) (PEI) membranes and films to investigate the effects of the processing on physicochemical surface properties by atomic force microscopy (AFM), scanning electron microscopy, contact angle as well as zeta potential measurements. A static platelet adhesion test was performed to analyze the thrombogenicity of both devices. While contact angle measurements showed similar levels of hydrophobicity and zeta potential values were equivalent, mean surface roughness as well as surface energies in the dispersive part were found to be increased for the PEI membrane. The static platelet adhesion test showed a significantly decreased number of adherent platelets per surface area on the PEI film (178.98 ± 102.70/45000 μm2) compared to the PEI membrane (504 ± 314.27/45000μm2) and, consequently, revealed evidence for higher thrombogenicity of the PEI membrane. This study shows that processing can have a significant effect on platelet adhesion to biomaterials, even though, molar weight was identical. Thrombogenicity of polymer-based cardiovascular devices, therefore, have to be evaluated at the final product level, following the entire processing procedure.


International Journal of Artificial Organs | 2009

Localized and sustained SDF-1 gene release mediated by fibronectin films: A potential method for recruiting stem cells.

Weiwei Wang; Wenzhong Li; Lee L. Ong; Karola Lützow; Andreas Lendlein; Dario Furlani; Ralf Gäbel; Deling Kong; Jun Wang; Ren K. Li; Gustav Steinhoff; Nan Ma

Gene-activated matrix has wide potential utilization in tissue engineering. It may genetically modify cells with plasmid DNA encoding therapeutic genes and allow sustained expression and release of the proteins to surrounding tissues. In this study, we assessed the feasibility of the local gene release from human fibronectin (HFN) substrate and the efficacy of local release of stromal cell-derived factor-1 (SDF-1) gene on c-kit+ cell homing. Cationic polymer polyethylenimine (25kDa PEI) was used as non-viral DNA vector. Gene-activated HFN (GAH) was prepared by mixing PEI/DNA complexes with HFN substrate. The DNA retardation, the complex size, and the DNA release speed from the GAH were studied. The in vitro transfection was optimized by luciferase expression and cell viability assay in the COS7 cell line. Localized gene expression in COS7 cells cultured on the GAH was assessed by LacZ and GFP-N3-SDF-1 marker genes. C-kit+ cell homing was investigated in response to the local in vitro SDF-1 expression from rat mesenchymal stem cells (RMSCs) cultured on GAH. Results showed GAH allows long time-sustained DNA release, localized gene delivery, and high transfection efficiency. Local SDF-1 expression with GAH is a promising method to induce targetable stem cell homing.


Journal of Materials Chemistry B | 2014

Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility

Axel T. Neffe; Maik von Ruesten-Lange; Steffen Braune; Karola Lützow; Toralf Roch; Klaus Richau; Anne Krüger; Tobias Becherer; Andreas F. Thünemann; F. Jung; Rainer Haag; Andreas Lendlein

Hemocompatible materials are needed for internal and extracorporeal biomedical applications, which should be realizable by reducing protein and thrombocyte adhesion to such materials. Polyethers have been demonstrated to be highly efficient in this respect on smooth surfaces. Here, we investigate the grafting of oligo- and polyglycerols to rough poly(ether imide) membranes as a polymer relevant to biomedical applications and show the reduction of protein and thrombocyte adhesion as well as thrombocyte activation. It could be demonstrated that, by performing surface grafting with oligo- and polyglycerols of relatively high polydispersity (>1.5) and several reactive groups for surface anchoring, full surface shielding can be reached, which leads to reduced protein adsorption of albumin and fibrinogen. In addition, adherent thrombocytes were not activated. This could be clearly shown by immunostaining adherent proteins and analyzing the thrombocyte covered area. The presented work provides an important strategy for the development of application relevant hemocompatible 3D structured materials.

Collaboration


Dive into the Karola Lützow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nan Ma

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge