Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karolina Kauppi is active.

Publication


Featured researches published by Karolina Kauppi.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Longitudinal evidence for diminished frontal cortex function in aging

Lars Nyberg; Alireza Salami; Mikael Andersson; Johan Eriksson; Grégoria Kalpouzos; Karolina Kauppi; Johanna Lind; Sara Pudas; Jonas Persson; Lars-Göran Nilsson

Cross-sectional estimates of age-related changes in brain structure and function were compared with 6-y longitudinal estimates. The results indicated increased sensitivity of the longitudinal approach as well as qualitative differences. Critically, the cross-sectional analyses were suggestive of age-related frontal overrecruitment, whereas the longitudinal analyses revealed frontal underrecruitment with advancing age. The cross-sectional observation of overrecruitment reflected a select elderly sample. However, when followed over time, this sample showed reduced frontal recruitment. These findings dispute inferences of true age changes on the basis of age differences, hence challenging some contemporary models of neurocognitive aging, and demonstrate age-related decline in frontal brain volume as well as functional response.


Cerebral Cortex | 2012

Longitudinal Structure–Function Correlates in Elderly Reveal MTL Dysfunction with Cognitive Decline

Jonas Persson; Sara Pudas; Johanna Lind; Karolina Kauppi; Lars-Göran Nilsson; Lars Nyberg

By integrating behavioral measures and imaging data, previous investigations have explored the relationship between biological markers of aging and cognitive functions. Evidence from functional and structural neuroimaging has revealed that hippocampal volume and activation patterns in the medial temporal lobe (MTL) may predict cognitive performance in old age. Most past demonstrations of age-related differences in brain structure-function were based on cross-sectional comparisons. Here, the relationship between 6-year intraindividual change in functional magnetic resonance imaging (fMRI) signal and change in memory performance over 2 decades was examined. Correlations between intraindividual change in fMRI signal during episodic encoding and change in memory performance measured outside of scanning were used as an estimate for relating brain-behavior changes. The results revealed a positive relationship between activation change in the hippocampus (HC) and change in memory performance, reflecting reduced hippocampal activation in participants with declining performance. Using a similar analytic approach as for the functional data, we found that individuals with declining performance had reduced HC volume compared with individuals with intact performance. These observations provide a strong link between cognitive change in older adults and MTL structure and function and thus provide insights into brain correlates of individual variability in aging trajectories.


Nature Genetics | 2017

Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders.

Min-Tzu Lo; David A. Hinds; Joyce Y. Tung; Carol E. Franz; Chun-Chieh Fan; Yunpeng Wang; Olav B. Smeland; Andrew J. Schork; Dominic Holland; Karolina Kauppi; Nilotpal Sanyal; Valentina Escott-Price; Daniel J. Smith; Michael Conlon O'Donovan; Hreinn Stefansson; Gyda Bjornsdottir; Thorgeir E. Thorgeirsson; Kari Stefansson; Linda K. McEvoy; Anders M. Dale; Ole A. Andreassen; Chi-Hua Chen

Personality is influenced by genetic and environmental factors and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132–260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit–hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion–introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety).


The Journal of Neuroscience | 2011

KIBRA Polymorphism Is Related to Enhanced Memory and Elevated Hippocampal Processing

Karolina Kauppi; Lars-Göran Nilsson; Rolf Adolfsson; Elias Eriksson; Lars Nyberg

Several studies have linked the KIBRA rs17070145 T polymorphism to superior episodic memory in healthy humans. One study investigated the effect of KIBRA on brain activation patterns (Papassotiropoulos et al., 2006) and observed increased hippocampal activation in noncarriers of the T allele during retrieval. Noncarriers were interpreted to need more hippocampal activation to reach the same performance level as T carriers. Using large behavioral (N = 2230) and fMRI (N = 83) samples, we replicated the KIBRA effect on episodic memory performance, but found increased hippocampal activation in T carriers during episodic retrieval. There was no evidence of compensatory brain activation in noncarriers within the hippocampal region. In the main fMRI sample, T carriers performed better than noncarriers during scanning but, importantly, the difference in hippocampus activation remained after post hoc matching according to performance, sex, and age (N = 64). These findings link enhanced memory performance in KIBRA T allele carriers to elevated hippocampal functioning, rather than to neural compensation in noncarriers.


Journal of Cognitive Neuroscience | 2014

Age-related and genetic modulation of frontal cortex efficiency

Lars Nyberg; Micael Andersson; Karolina Kauppi; Anders Lundquist; Jonas Persson; Sara Pudas; Lars-Göran Nilsson

The dorsolateral pFC (DLPFC) is a key region for working memory. It has been proposed that the DLPFC is dynamically recruited depending on task demands. By this view, high DLPFC recruitment for low-demanding tasks along with weak DLPFC upregulation at higher task demands reflects low efficiency. Here, the fMRI BOLD signal during working memory maintenance and manipulation was examined in relation to aging and catechol-O-methyltransferase (COMT) Val158Met status in a large representative sample (n = 287). The efficiency hypothesis predicts a weaker DLPFC response during manipulation, along with a stronger response during maintenance for older adults and COMT Val carriers compared with younger adults and COMT Met carriers. Consistent with the hypothesis, younger adults and met carriers showed maximal DLPFC BOLD response during manipulation, whereas older adults and val carriers displayed elevated DLPFC responses during the less demanding maintenance condition. The observed inverted relations support a link between dopamine and DLPFC efficiency.


NeuroImage | 2014

Additive genetic effect of APOE and BDNF on hippocampus activity

Karolina Kauppi; Lars-Göran Nilsson; Jonas Persson; Lars Nyberg

Human memory is a highly heritable polygenic trait with complex inheritance patterns. To study the genetics of memory and memory-related diseases, hippocampal functioning has served as an intermediate phenotype. The importance of investigating gene-gene effects on complex phenotypes has been emphasized, but most imaging studies still focus on single polymorphisms. APOE ε4 and BDNF Met, two of the most studied gene variants for variability in memory performance and neuropsychiatric disorders, have both separately been related to poorer episodic memory and altered hippocampal functioning. Here, we investigated the combined effect of APOE and BDNF on hippocampal activation (N=151). No non-additive interaction effects were seen. Instead, the results revealed decreased activation in bilateral hippocampus and parahippocampus as a function of the number of APOE ε4 and BDNF Met alleles present (neither, one, or both). The combined effect was stronger than either of the individual effects, and both gene variables explained significant proportions of variance in BOLD signal change. Thus, there was an additive gene-gene effect of APOE and BDNF on medial temporal lobe (MTL) activation, showing that a larger proportion of variance in brain activation attributed to genetics can be explained by considering more than one gene variant. This effect might be relevant for the understanding of normal variability in memory function as well as memory-related disorders associated with APOE and BDNF.


NeuroImage | 2010

Characterizing the neural correlates of modality-specific and modality-independent accessibility and availability signals in memory using partial-least squares.

Alireza Salami; Johan Eriksson; Kristiina Kompus; Reza Habib; Karolina Kauppi; Lars Nyberg

Previous studies have shown that information that currently cannot be retrieved but will be retrieved on a subsequent, more supported task (i.e. is available but not accessible) has a distinct neural signature compared with non-available information. For verbal paired-associates, an availability signal has been revealed in left middle temporal cortex, an area potentially involved in the storage of such information, raising the possibility that availability signals are expressed in modality-specific storage sites. In the present study subjects encoded pictures and sounds representing concrete objects. One day later, during fMRI scanning, a verbal cued-recall task was administrated followed by a post-scan recognition task. Items remembered on both tasks were classified as accessible; items not remembered on the first but on the second task were classified as available; and items not remembered on any of the tasks were classified as not available. Multivariate partial-least-squares analyses revealed a modality-independent accessibility network with dominant contributions of left inferior parietal cortex, left inferior frontal cortex, and left hippocampus. Additionally, a modality-specific availability network was identified which included increased activity in visual regions for available pictorial information and in auditory regions for available sound information. These findings show that availability in memory, at least in part, is characterized by systematic changes in brain activity in sensory regions whereas memory access reflects differential activity in a modality-independent, conceptual network, thus indicating qualitative differences between availability and accessibility in memory.


JAMA Psychiatry | 2017

Identification of Genetic Loci Jointly Influencing Schizophrenia Risk and the Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function

Olav B. Smeland; Oleksandr Frei; Karolina Kauppi; W. David Hill; Wen Li; Yunpeng Wang; Florian Krull; Francesco Bettella; Jon Alm Eriksen; Aree Witoelar; Gail Davies; Chun Chieh Fan; Wesley K. Thompson; Max Lam; Todd Lencz; Chi-Hua Chen; Torill Ueland; Erik G. Jönsson; Srdjan Djurovic; Ian J. Deary; Anders M. Dale; Ole A. Andreassen

Importance Schizophrenia is associated with widespread cognitive impairments. Although cognitive deficits are one of the factors most strongly associated with functional outcome in schizophrenia, current treatment strategies largely fail to ameliorate these impairments. To develop more efficient treatment strategies in patients with schizophrenia, a better understanding of the pathogenesis of these cognitive deficits is needed. Accumulating evidence indicates that genetic risk of schizophrenia may contribute to cognitive dysfunction. Objective To identify genomic regions jointly influencing schizophrenia and the cognitive domains of reaction time and verbal-numerical reasoning, as well as general cognitive function, a phenotype that captures the shared variation in performance across cognitive domains. Design, Setting, and Participants Combining data from genome-wide association studies from multiple phenotypes using conditional false discovery rate analysis provides increased power to discover genetic variants and could elucidate shared molecular genetic mechanisms. Data from the following genome-wide association studies, published from July 24, 2014, to January 17, 2017, were combined: schizophrenia in the Psychiatric Genomics Consortium cohort (n = 79 757 [cases, 34 486; controls, 45 271]); verbal-numerical reasoning (n = 36 035) and reaction time (n = 111 483) in the UK Biobank cohort; and general cognitive function in CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) (n = 53 949) and COGENT (Cognitive Genomics Consortium) (n = 27 888). Main Outcomes and Measures Genetic loci identified by conditional false discovery rate analysis. Brain messenger RNA expression and brain expression quantitative trait locus functionality were determined. Results Among the participants in the genome-wide association studies, 21 loci jointly influencing schizophrenia and cognitive traits were identified: 2 loci shared between schizophrenia and verbal-numerical reasoning, 6 loci shared between schizophrenia and reaction time, and 14 loci shared between schizophrenia and general cognitive function. One locus was shared between schizophrenia and 2 cognitive traits and represented the strongest shared signal detected (nearest gene TCF20; chromosome 22q13.2), and was shared between schizophrenia (z score, 5.01; P = 5.53 × 10−7), general cognitive function (z score, –4.43; P = 9.42 × 10−6), and verbal-numerical reasoning (z score, –5.43; P = 5.64 × 10−8). For 18 loci, schizophrenia risk alleles were associated with poorer cognitive performance. The implicated genes are expressed in the developmental and adult human brain. Replicable expression quantitative trait locus functionality was identified for 4 loci in the adult human brain. Conclusions and Relevance The discovered loci improve the understanding of the common genetic basis underlying schizophrenia and cognitive function, suggesting novel molecular genetic mechanisms.


Brain Behavior and Immunity | 2017

A genetic association study of CSMD1 and CSMD2 with cognitive function

Lavinia Athanasiu; Sudheer Giddaluru; Carla P. D. Fernandes; Andrea Christoforou; Ivar Reinvang; Astri J. Lundervold; Lars-Göran Nilsson; Karolina Kauppi; Rolf Adolfsson; Elias Eriksson; Kjetil Sundet; Srdjan Djurovic; Thomas Espeseth; Lars Nyberg; Vidar M. Steen; Ole A. Andreassen; Stephanie Le Hellard

The complement cascade plays a role in synaptic pruning and synaptic plasticity, which seem to be involved in cognitive functions and psychiatric disorders. Genetic variants in the closely related CSMD1 and CSMD2 genes, which are implicated in complement regulation, are associated with schizophrenia. Since patients with schizophrenia often show cognitive impairments, we tested whether variants in CSMD1 and CSMD2 are also associated with cognitive functions per se. We took a discovery-replication approach, using well-characterized Scandinavian cohorts. A total of 1637 SNPs in CSMD1 and 206 SNPs in CSMD2 were tested for association with cognitive functions in the NCNG sample (Norwegian Cognitive NeuroGenetics; n=670). Replication testing of SNPs with p-value<0.001 (7 in CSMD1 and 3 in CSMD2) was carried out in the TOP sample (Thematically Organized Psychosis; n=1025) and the BETULA sample (Betula Longitudinal Study on aging, memory and dementia; n=1742). Finally, we conducted a meta-analysis of these SNPs using all three samples. The previously identified schizophrenia marker in CSMD1 (SNP rs10503253) was also included. The strongest association was observed between the CSMD1 SNP rs2740931 and performance in immediate episodic memory (p-value=5×10-6, minor allele A, MAF 0.48-0.49, negative direction of effect). This association reached the study-wide significance level (p⩽1.2×10-5). SNP rs10503253 was not significantly associated with cognitive functions in our samples. In conclusion, we studied n=3437 individuals and found evidence that a variant in CSMD1 is associated with cognitive function. Additional studies of larger samples with cognitive phenotypes will be needed to further clarify the role of CSMD1 in cognitive phenotypes in health and disease.


Neuropsychologia | 2013

Decreased medial temporal lobe activation in BDNF 66Met allele carriers during memory encoding

Karolina Kauppi; Lars-Göran Nilsson; Rolf Adolfsson; Anders Lundquist; Elias Eriksson; Lars Nyberg

The Met allele of the Brain-derived neurotrophic factor (BDNF) Val(66)Met polymorphism has been associated with impaired activity-dependent secretion of BDNF protein and decreased memory performance. Results from imaging studies relating Val(66)Met to brain activation during memory processing have been inconsistent, with reports of both increased and decreased activation in the Medial Temporal Lobe (MTL) in Met carriers relative to Val homozygotes. Here, we extensively studied BDNF Val(66)Met in relation to brain activation and white matter integrity as well as memory performance in a large imaging (n=194) and behavioral (n=2229) sample, respectively. Functional magnetic resonance imaging (fMRI) was used to investigate MTL activation in healthy participants in the age of 55-75 years during a face-name episodic encoding and retrieval task. White matter integrity was measured using diffusion tensor imaging. BDNF Met allele carriers had significantly decreased activation in the MTL during encoding processes, but not during retrieval processes. In contrast to previous proposals, the effect was not modulated by age and the polymorphism was not related to white matter integrity. Met carriers had lower memory performance than Val homozygotes, but differences were subtle and not significant. In conclusion, the BDNF Met allele has a negative influence on MTL functioning, preferentially during encoding processes, which might translate into impaired episodic memory function.

Collaboration


Dive into the Karolina Kauppi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders M. Dale

University of California

View shared research outputs
Top Co-Authors

Avatar

Chi-Hua Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Yunpeng Wang

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge