Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karolina Szlufcik is active.

Publication


Featured researches published by Karolina Szlufcik.


Journal of Biological Chemistry | 2004

Caspase-3-induced Truncation of Type 1 Inositol Trisphosphate Receptor Accelerates Apoptotic Cell Death and Induces Inositol Trisphosphate-independent Calcium Release during Apoptosis

Zerihun Assefa; Geert Bultynck; Karolina Szlufcik; Nael Nadif Kasri; Elke Vermassen; Jozef Goris; Ludwig Missiaen; Geert Callewaert; Jan B. Parys; Humbert De Smedt

Inositol 1,4,5-trisphosphate receptor-deficient (IP3RKO) B-lymphocytes were used to investigate the functional relevance of type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) and its cleavage by caspase-3 in apoptosis. We showed that inositol 1,4,5-trisphosphate receptor-deficient cells were largely resistant to apoptosis induced by both staurosporine (STS) and B-cell receptor (BCR) stimulation. Expression of either the wild-type IP3R1 or an N-terminal deletion mutant (Δ1-225) that lacks inositol 1,4,5-trisphosphate-induced Ca2+ release activity restored sensitivity to apoptosis and the consequent rise in free cytosolic Ca2+ concentration ([Ca2+]i). Expression of caspase-3-non-cleavable mutant receptor, however, dramatically slowed down the rate of apoptosis and prevented both Ca2+ overload and secondary necrosis. Conversely, expression of the “channel-only” domain of IP3R1, a fragment of the receptor generated by caspase-3 cleavage, strongly increased the propensity of the cells to undergo apoptosis. In agreement with these observations, caspase inhibitors impeded apoptosis and the associated rise in [Ca2+]i. Both the staurosporine- and B-cell receptor-induced apoptosis and increase in [Ca2+]i could be induced in nominally Ca2+-free and serum-free culture media, suggesting that the apoptosis-related rise in [Ca2+]i was primarily because of the release from internal stores rather than of influx through the plasma membrane. Altogether, our results suggest that IP3R1 plays a pivotal role in apoptosis and that the increase in [Ca2+]i during apoptosis is mainly the consequence of IP3R1 cleavage by caspase-3. These observations also indicate that expression of a functional IP3R1 per se is not enough to generate the significant levels of cytosolic Ca2+ needed for the rapid execution of apoptosis, but a prior activation of caspase-3 and the resulting truncation of the IP3R1 are required.


Biochemical Journal | 2004

Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction

Geert Bultynck; Karolina Szlufcik; Nael Nadif Kasri; Zerihun Assefa; Geert Callewaert; Ludwig Missiaen; Jan B. Parys; Humbert De Smedt

Thiol-reactive agents such as thimerosal have been shown to modulate the Ca2+-flux properties of IP3 (inositol 1,4,5-trisphosphate) receptor (IP3R) via an as yet unidentified mechanism [Parys, Missiaen, De Smedt, Droogmans and Casteels (1993) Pflügers Arch. 424, 516-522; Kaplin, Ferris, Voglmaier and Snyder (1994) J. Biol. Chem. 269, 28972-28978; Missiaen, Taylor and Berridge (1992) J. Physiol. (Cambridge, U.K.) 455, 623-640; Missiaen, Parys, Sienaert, Maes, Kunzelmann, Takahashi, Tanzawa and De Smedt (1998) J. Biol. Chem. 273, 8983-8986]. In the present study, we show that thimerosal potentiated IICR (IP3-induced Ca2+ release) and IP3-binding activity of IP3R1, expressed in triple IP3R-knockout R23-11 cells derived from DT40 chicken B lymphoma cells, but not of IP3R3 or [D1-225]-IP3R1, which lacks the N-terminal suppressor domain. Using a 45Ca2+-flux technique in permeabilized A7r5 smooth-muscle cells, we have shown that Ca2+ shifted the stimulatory effect of thimerosal on IICR to lower concentrations of thimerosal and thereby increased the extent of Ca2+ release. This suggests that Ca2+ and thimerosal synergetically regulate IP3R1. Glutathione S-transferase pull-down experiments elucidated an interaction between amino acids 1-225 (suppressor domain) and amino acids 226-604 (IP3-binding core) of IP3R1, and this interaction was strengthened by both Ca2+ and thimerosal. In contrast, calmodulin and sCaBP-1 (short Ca2+-binding protein-1), both having binding sites in the 1-225 region, weakened the interaction. This interaction was not found for IP3R3, in agreement with the lack of functional stimulation of this isoform by thimerosal. The interaction between the IP3-binding and transmembrane domains (amino acids 1-604 and 2170-2749 respectively) was not affected by thimerosal and Ca2+, but it was significantly inhibited by IP3 and adenophostin A. Our results demonstrate that thimerosal and Ca2+ induce isoform-specific conformational changes in the N-terminal part of IP3R1, leading to the formation of a highly IP3-sensitive Ca2+-release channel.


Journal of Applied Physiology | 2011

Beneficial metabolic adaptations due to endurance exercise training in the fasted state

Karen Van Proeyen; Karolina Szlufcik; Henri Nielens; Monique Ramaekers; Peter Hespel

Training with limited carbohydrate availability can stimulate adaptations in muscle cells to facilitate energy production via fat oxidation. Here we investigated the effect of consistent training in the fasted state, vs. training in the fed state, on muscle metabolism and substrate selection during fasted exercise. Twenty young male volunteers participated in a 6-wk endurance training program (1-1.5 h cycling at ∼70% Vo(₂max), 4 days/wk) while receiving isocaloric carbohydrate-rich diets. Half of the subjects trained in the fasted state (F; n = 10), while the others ingested ample carbohydrates before (∼160 g) and during (1 g·kg body wt⁻¹·h⁻¹) the training sessions (CHO; n = 10). The training similarly increased Vo(₂max) (+9%) and performance in a 60-min simulated time trial (+8%) in both groups (P < 0.01). Metabolic measurements were made during a 2-h constant-load exercise bout in the fasted state at ∼65% pretraining Vo(₂max). In F, exercise-induced intramyocellular lipid (IMCL) breakdown was enhanced in type I fibers (P < 0.05) and tended to be increased in type IIa fibers (P = 0.07). Training did not affect IMCL breakdown in CHO. In addition, F (+21%) increased the exercise intensity corresponding to the maximal rate of fat oxidation more than did CHO (+6%) (P < 0.05). Furthermore, maximal citrate synthase (+47%) and β-hydroxyacyl coenzyme A dehydrogenase (+34%) activity was significantly upregulated in F (P < 0.05) but not in CHO. Also, only F prevented the development exercise-induced drop in blood glucose concentration (P < 0.05). In conclusion, F is more effective than CHO to increase muscular oxidative capacity and at the same time enhances exercise-induced net IMCL degradation. In addition, F but not CHO prevented drop of blood glucose concentration during fasting exercise.


Biology of the Cell | 2006

Uncoupled IP3 receptor can function as a Ca2+-leak channel: cell biological and pathological consequences.

Karolina Szlufcik; Ludwig Missiaen; Jan B. Parys; Geert Callewaert; Humbert De Smedt

Ca2+ release via intracellular release channels, IP3Rs (inositol 1,4,5‐trisphosphate receptors) and RyRs (ryanodine receptors), is perhaps the most ubiquitous and versatile cellular signalling mechanism, and is involved in a vast number of cellular processes. In addition to this classical release pathway there is limited, but yet persistent, information about less well‐defined Ca2+‐leak pathways that may play an important role in the control of the Ca2+ load of the endo(sarco)plasmic reticulum. The mechanisms responsible for this ‘basal’ leak are not known, but recent data suggest that both IP3Rs and RyRs may also operate as Ca2+‐leak channels, particularly in pathological conditions. Proteolytic cleavage or biochemical modification (such as hyperphosphorylation or nitrosylation), for example, occurring during conditions of cell stress or apoptosis, can functionally uncouple the cytoplasmic control domains from the channel domain of the receptor. Highly significant information has been obtained from studies of malfunctioning channels in various disorders; for example, RyRs in cardiac malfunction or genetic muscle diseases and IP3Rs in neurodegenerative diseases. In this review we aim to summarize the existing information about functionally uncoupled IP3R and RyR channels, and to discuss the concept that those channels can participate in Ca2+‐leak pathways.


The Journal of Physiology | 2010

Training in the fasted state improves glucose tolerance during fat-rich diet

Karen Van Proeyen; Karolina Szlufcik; Henri Nielens; Koen Pelgrim; Louise Deldicque; Matthijs Kc Hesselink; Paul P. Van Veldhoven; Peter Hespel

A fat‐rich energy‐dense diet is an important cause of insulin resistance. Stimulation of fat turnover in muscle cells during dietary fat challenge may contribute to maintenance of insulin sensitivity. Exercise in the fasted state markedly stimulates energy provision via fat oxidation. Therefore, we investigated whether exercise training in the fasted state is more potent than exercise in the fed state to rescue whole‐body glucose tolerance and insulin sensitivity during a period of hyper‐caloric fat‐rich diet. Healthy male volunteers (18–25 y) received a hyper‐caloric (∼+30% kcal day−1) fat‐rich (50% of kcal) diet for 6 weeks. Some of the subjects performed endurance exercise training (4 days per week) in the fasted state (F; n= 10), whilst the others ingested carbohydrates before and during the training sessions (CHO; n= 10). The control group did not train (CON; n= 7). Body weight increased in CON (+3.0 ± 0.8 kg) and CHO (+1.4 ± 0.4 kg) (P < 0.01), but not in F (+0.7 ± 0.4 kg, P= 0.13). Compared with CON, F but not CHO enhanced whole‐body glucose tolerance and the Matsuda insulin sensitivity index (P < 0.05). Muscle GLUT4 protein content was increased in F (+28%) compared with both CHO (P= 0.05) and CON (P < 0.05). Furthermore, only training in F elevated AMP‐activated protein kinase α phosphorylation (+25%) as well as up‐regulated fatty acid translocase/CD36 and carnitine palmitoyltransferase 1 mRNA levels compared with CON (∼+30%). High‐fat diet increased intramyocellular lipid but not diacylglycerol and ceramide contents, either in the absence or presence of training. This study for the first time shows that fasted training is more potent than fed training to facilitate adaptations in muscle and to improve whole‐body glucose tolerance and insulin sensitivity during hyper‐caloric fat‐rich diet.


Osteoarthritis and Cartilage | 2009

Deletion of frizzled-related protein reduces voluntary running exercise performance in mice

Rik Lories; J Peeters; Karolina Szlufcik; Peter Hespel; Frank P. Luyten

OBJECTIVE To study the effect of frizzled-related protein (Frzb) deletion in mice on voluntary running wheel exercise performance and osteoarthritis. METHODS At the age of 7 weeks, Frzb(-/-) and wild-type mice were grouped and a running wheel was introduced into the cage. At week 8, all mice were caged solitarily with a running wheel available. Mice were allowed free exercise for 6-12 months and distances run were recorded daily. Non-running mice were used as additional control group. X-rays of knees and hips were taken at different time points. At the end of the experiment, mice were sacrificed and joints were processed for histological evaluation. Cartilage damage, synovitis and osteophyte formation were scored. Muscle fiber composition of the soleus and extensor digitorum longus was studied by immunofluorescence. RESULTS At the age of 6 months, both female and male wild-type mice showed a significantly greater exercise performance than the Frzb(-/-) mice (P<0.05). At 1 year, the difference was still significant for male mice, but not for females. Running exercise did not significantly affect severity of osteoarthritis. No statistical differences in osteoarthritis severity were seen between Frzb(-/-) mice and wild-type mice. No differences were seen in muscle composition between Frzb(-/-) mice and wild-type mice. CONCLUSION Absence of Frzb in mice reduced voluntary exercise performance in running wheels. These experiments demonstrate that the effects of genes in mice can also be evaluated using functional outcomes such as running wheel exercise performance, similar to evolving practice in human clinical trials.


Journal of Applied Physiology | 2011

High-fat diet overrules the effects of training on fiber-specific intramyocellular lipid utilization during exercise

Karen Van Proeyen; Karolina Szlufcik; Henri Nielens; Louise Deldicque; Raf Van Dyck; Monique Ramaekers; Peter Hespel

In this study, we compared the effects of endurance training in the fasted state (F) vs. the fed state [ample carbohydrate intake (CHO)] on exercise-induced intramyocellular lipid (IMCL) and glycogen utilization during a 6-wk period of a hypercaloric (∼+30% kcal/day) fat-rich diet (HFD; 50% of kcal). Healthy male volunteers (18-25 yrs) received a HFD in conjunction with endurance training (four times, 60-90 min/wk) either in F (n = 10) or with CHO before and during exercise sessions (n = 10). The control group (n = 7) received a HFD without training and increased body weight by ∼3 kg (P < 0.001). Before and after a HFD, the subjects performed a 2-h constant-load bicycle exercise test in F at ∼70% maximal oxygen uptake rate. A HFD, both in the absence (F) or presence (CHO) of training, elevated basal IMCL content by ∼50% in type I and by ∼75% in type IIa fibers (P < 0.05). Independent of training in F or CHO, a HFD, as such, stimulated exercise-induced net IMCL breakdown by approximately twofold in type I and by approximately fourfold in type IIa fibers. Furthermore, exercise-induced net muscle glycogen breakdown was not significantly affected by a HFD. It is concluded that a HFD stimulates net IMCL degradation by increasing basal IMCL content during exercise in type I and especially IIa fibers. Furthermore, a hypercaloric HFD provides adequate amounts of carbohydrates to maintain high muscle glycogen content during training and does not impair exercise-induced muscle glycogen breakdown.


Journal of Nutritional Biochemistry | 2011

Exercise-induced, but not creatine-induced, decrease in intramyocellular lipid content improves insulin sensitivity in rats.

Morad Vaisy; Karolina Szlufcik; Katrien De Bock; Bert O. Eijnde; Karen Van Proeyen; Kristin Verbeke; Paul P. Van Veldhoven; Peter Hespel

The effect of creatine supplementation, alone or in combination with exercise training, on insulin sensitivity, intramyocellular lipid content (IMCL) and fatty acid translocase (FAT)/CD36 content was investigated in rats fed a sucrose-rich cafeteria diet during 12 weeks. Five experimental conditions were CON, receiving normal pellets; CAF, fed the cafeteria diet; CAF(TR), fed the cafeteria diet together with exercise training in weeks 8-12 and CAF(CR) and CAF(CRT) that were analogous to CAF and CAF(TR), respectively, but which received daily 2.5% of creatine monohydrate. During intravenous glucose tolerance test, compared with CON, whole-body glucose tolerance was reduced in CAF and CAF(CR) but not in CAF(TR) and CAF(CRT). Insulin-stimulated glucose transport in perfused red gastrocnemius muscles was impaired in CAF and CAF(CR) but not in the trained groups. IMCL content in soleus and extensor digitorum longus muscles was higher in CAF than in CON, but not in CAF(TR), CAF(CR) and CAF(CRT). Compared with CON and CAF, FAT/CD36 protein content in m. soleus, was ~40% lower in CAF(CR), CAF(TR) and CAF(CRT). The fraction of fecal fat, as determined in a 3-week post hoc study, was 25% higher in CAF(CR) than in CON. Moreover, in CAF(CR), triglyceride concentration in blood and liver were significantly lower than in CAF. It is concluded that creatine supplementation in rats on a cafeteria diet inhibits IMCL accumulation via inhibition of gastrointestinal lipid absorption together with lower muscle FAT/CD36 content. Furthermore, exercise-induced but not creatine-induced reduction of IMCL is associated with improved insulin action on glucose transport in muscle cells.


Biochemical and Biophysical Research Communications | 2003

Calcineurin and intracellular Ca2+-release channels: regulation or association?

G Bultynck; Elke Vermassen; Karolina Szlufcik; P De Smet; Rafael A. Fissore; Geert Callewaert; Ludwig Missiaen; H De Smedt; Jan B. Parys


Molecular Pharmacology | 2004

The N-terminal Ca2+-Independent Calmodulin-Binding Site on the Inositol 1,4,5-trisphosphate Receptor Is Responsible for Calmodulin Inhibition, Even Though This Inhibition Requires Ca2+

Nael Nadif Kasri; Geert Bultynck; Jeremy T. Smyth; Karolina Szlufcik; Jan B. Parys; Geert Callewaert; Ludwig Missiaen; Rafael A. Fissore; Katsuhiko Mikoshiba; Humbert De Smedt

Collaboration


Dive into the Karolina Szlufcik's collaboration.

Top Co-Authors

Avatar

Peter Hespel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Karen Van Proeyen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Henri Nielens

Cliniques Universitaires Saint-Luc

View shared research outputs
Top Co-Authors

Avatar

Monique Ramaekers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Louise Deldicque

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Geert Callewaert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ludwig Missiaen

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

Jan B. Parys

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Humbert De Smedt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge