Karoly Nikolich
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karoly Nikolich.
Nature Medicine | 2003
Gustav Mattiasson; Mehrdad Shamloo; Gunilla Gidö; Kavitha Mathi; Gregor Tomasevic; Saili Yi; Craig H. Warden; Roger F. Castilho; Thorsten Melcher; Mirella Gonzalez-Zulueta; Karoly Nikolich; Tadeusz Wieloch
Whereas uncoupling protein 1 (UCP-1) is clearly involved in thermogenesis, the role of UCP-2 is less clear. Using hybridization, cloning techniques and cDNA array analysis to identify inducible neuroprotective genes, we found that neuronal survival correlates with increased expression of Ucp2. In mice overexpressing human UCP-2, brain damage was diminished after experimental stroke and traumatic brain injury, and neurological recovery was enhanced. In cultured cortical neurons, UCP-2 reduced cell death and inhibited caspase-3 activation induced by oxygen and glucose deprivation. Mild mitochondrial uncoupling by 2,4-dinitrophenol (DNP) reduced neuronal death, and UCP-2 activity was enhanced by palmitic acid in isolated mitochondria. Also in isolated mitochondria, UCP-2 shifted the release of reactive oxygen species from the mitochondrial matrix to the extramitochondrial space. We propose that UCP-2 is an inducible protein that is neuroprotective by activating cellular redox signaling or by inducing mild mitochondrial uncoupling that prevents the release of apoptogenic proteins.
Current Opinion in Neurobiology | 2006
Tadeusz Wieloch; Karoly Nikolich
Brain insults cause rapid cell death, and a disruption of functional circuits, in the affected regions. As the injured tissue recovers from events associated with cell death, regenerative processes are activated that over months lead to a certain degree of functional recovery. Factors produced by new neurons and glia, axonal sprouting of surviving neurons, and new synapse formation help to re-establish some of the lost functions. The timing and location of such events is crucial in the success of the regenerative process. Comprehensive gene expression profiling and proteomic analyses have enabled a deeper molecular and cellular mechanistic understanding of post-injury brain regeneration. These new mechanistic insights are aiding the design of novel therapeutic modalities that enhance regeneration.
Oncogene | 2005
Sumana Shashidhar; Gustavo Lorente; Usha Nagavarapu; April Nelson; Jane Kuo; Jeramiah Cummins; Karoly Nikolich; Roman Urfer; Erik D. Foehr
GPR56 (also known as TM7XN1) is a newly discovered orphan G-protein-coupled receptor (GPCR) of the secretin family that has a role in the development of neural progenitor cells and has been linked to developmental malformations of the human brain. GPR56 diverges from other secretin-like family members in that it has an extremely large N-terminal extracellular region (381 amino acids) and contains a novel feature among this new subclass, consisting of four cysteine residues that define a GPCR proteolytic site (GPS motif) located just before the first transmembrane spanning domain. The rest of the amino-terminal domain contains a large number of possible N- and O-linked glycosylation sites similar to mucin-like proteins. These features suggest a role in cell–cell, or cell–matrix interactions. Here, we demonstrate upregulation of GPR56 in glioblastoma multiforme tumors using functional genomics. Immunohistochemistry studies confirmed the expression of GPR56 protein in a majority of glioblastoma/astrocytoma tumor samples with undetectable levels of expression in normal adult brain tissue. Immunofluorescence analysis of human glioma cells using anti-GPR56 antibodies demonstrate that GPR56 is expressed on the leading edge of membrane filopodia and colocalizes with α-actinin. Purified recombinant GPR56 extracellular domain protein inhibits glioma cell adhesion and causes abnormal cytoskeletal morphology and cell rounding. These results indicate that the extracellular domain may compete for unidentified ligand(s), and block the normal function of GPR56 in cell attachment. In reporter assays, overexpression of GPR56 activates the NF-κB, PAI-1 and TCF transcriptional response elements. These pathways have been implicated in cytoskeletal signaling, adhesion and tumor biology. The above results indicate that GPR56 serves as an adhesion GPCR and is involved in adhesion signaling.
Journal of Biological Chemistry | 2004
Li Gan; Shiming Ye; Alan Chu; Kristin Anton; Saili Yi; Valerie A. Vincent; David von Schack; Daniel Chin; Joseph Murray; Scott Lohr; László Patthy; Mirella Gonzalez-Zulueta; Karoly Nikolich; Roman Urfer
Alzheimers disease is a progressive neurodegenerative disease characterized by senile plaques, neurofibrillary tangles, dystrophic neurites, and reactive glial cells. Activated microglia are found to be intimately associated with senile plaques and may play a central role in mediating chronic inflammatory conditions in Alzheimers disease. Activation of cultured murine microglial BV2 cells by freshly sonicated Aβ42 results in the secretion of neurotoxic factors that kill primary cultured neurons. To understand molecular pathways underlying Aβ-induced microglial activation, we analyzed the expression levels of transcripts isolated from Aβ42-activated BV2 cells using high density filter arrays. The analysis of these arrays identified 554 genes that are transcriptionally up-regulated by Aβ42 in a statistically significant manner. Quantitative reverse transcription-PCR was used to confirm the regulation of a subset of genes, including cysteine proteases cathepsin B and cathepsin L, tissue inhibitor of matrix metalloproteinase 2, cytochrome c oxidase, and allograft inflammatory factor 1. Small interfering RNA-mediated silencing of the cathepsin B gene in Aβ-activated BV2 cells diminished the microglial activation-mediated neurotoxicity. Moreover, CA-074, a specific cathepsin B inhibitor, also abolished the neurotoxic effects caused by Aβ42-activated BV2 cells. Our results suggest an essential role for secreted cathepsin B in neuronal death mediated by Aβ-activated inflammatory response.
Brain | 2011
Karsten Ruscher; Mehrdad Shamloo; Mattias Rickhag; Istvan Ladunga; Liza Soriano; Lennart Gisselsson; Håkan Toresson; Lily Ruslim-Litrus; Donna Oksenberg; Roman Urfer; Barbro B. Johansson; Karoly Nikolich; Tadeusz Wieloch
Stroke leads to brain damage with subsequent slow and incomplete recovery of lost brain functions. Enriched housing of stroke-injured rats provides multi-modal sensorimotor stimulation, which improves recovery, although the specific mechanisms involved have not been identified. In rats housed in an enriched environment for two weeks after permanent middle cerebral artery occlusion, we found increased sigma-1 receptor expression in peri-infarct areas. Treatment of rats subjected to permanent or transient middle cerebral artery occlusion with 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine dihydrochloride, an agonist of the sigma-1 receptor, starting two days after injury, enhanced the recovery of lost sensorimotor function without decreasing infarct size. The sigma-1 receptor was found in the galactocerebroside enriched membrane microdomains of reactive astrocytes and in neurons. Sigma-1 receptor activation increased the levels of the synaptic protein neurabin and neurexin in membrane rafts in the peri-infarct area, while sigma-1 receptor silencing prevented sigma-1 receptor-mediated neurite outgrowth in primary cortical neuronal cultures. In astrocytic cultures, oxygen and glucose deprivation induced sigma-1 receptor expression and actin dependent membrane raft formation, the latter blocked by sigma-1 receptor small interfering RNA silencing and pharmacological inhibition. We conclude that sigma-1 receptor activation stimulates recovery after stroke by enhancing cellular transport of biomolecules required for brain repair, thereby stimulating brain plasticity. Pharmacological targeting of the sigma-1 receptor provides new opportunities for stroke treatment beyond the therapeutic window of neuroprotection.
European Journal of Neuroscience | 2006
Steven P. Braithwaite; Michael Adkisson; John Leung; Adrian Nava; Brett Masterson; Roman Urfer; Donna Oksenberg; Karoly Nikolich
Regulation of N‐methyl‐d‐aspartate (NMDA) receptors is critical for the normal functioning of the central nervous system. There must be precise mechanisms to allow for changes in receptor function required for learning and normal synaptic transmission, but within tight constraints to prevent pathology. Tyrosine phosphorylation is a major means by which NMDA receptors are regulated through the equilibrium between activity of Src family kinases and tyrosine phosphatases. Identification of NMDA receptor phosphatases has been difficult, the best candidate being striatal‐enriched tyrosine phosphatase (STEP). Here we demonstrate that STEP is a critical regulator of NMDA receptors and reveal that the action of this tyrosine phosphatase controls the constitutive trafficking of NMDA receptors and leads to changes in NMDA receptor activity at the neuronal surface. We show that STEP binds directly to NMDA receptors in the absence of other synaptic proteins. The activity of STEP selectively affects the expression of NMDA receptors at the neuronal plasma membrane. The result of STEPs action upon the NMDA receptor affects the functional properties of the receptor and its downstream signaling. These effects are evident when STEP levels are chronically reduced, indicating that there is no redundancy amongst phosphatases to compensate for altered STEP function in the CNS. STEP may have evolved specifically to fill a pivotal role as the NMDA receptor phosphatase, having a distinct and restricted localization and compartmentalization, and unique activity towards the NMDA receptor and its signaling pathway.
Journal of Biological Chemistry | 2005
Mehrdad Shamloo; Liza Soriano; Tadeusz Wieloch; Karoly Nikolich; Roman Urfer; Donna Oksenberg
Death-associated protein kinase (DAPK) is a calcium calmodulin-regulated serine/threonine protein kinase involved in ischemic neuronal death. In situ hybridization experiments show that DAPK mRNA expression is up-regulated in brain following a global ischemic insult and down-regulated in ischemic tissues after focal ischemia. DAPK is inactive in normal brain tissues, where it is found in its phosphorylated state and becomes rapidly and persistently dephosphorylated and activated in response to ischemia in vivo. A similar dephosphorylation pattern is detected in primary cortical neurons subjected to oxygen glucose deprivation or N-methyl-d-aspartate (NMDA)-induced toxicity. Both a calcineurin inhibitor, FK506, and a selective NMDA receptor antagonist, MK-801, inhibit the dephosphorylation of DAPK after in vitro ischemia. This indicates that DAPK could be activated by NMDA receptor-mediated calcium flux, activation of calcineurin, and subsequent DAPK dephosphorylation. Moreover, concomitantly to dephosphorylation, DAPK is proteolytically processed by cathepsin after ischemia. Furthermore, a selective DAPK inhibitor is neuroprotective in both in vitro and in vivo ischemic models. These results indicate that DAPK plays a key role in mediating ischemic neuronal injury.
Journal of Neuro-oncology | 2006
Rosalyn Ram; Gustavo Lorente; Karoly Nikolich; Roman Urfer; Erik Foehr; Usha Nagavarapu
SummaryInvasion of glioma cells involves the attachment of invading tumor cells to extracellular matrix (ECM), disruption of ECM components, and subsequent cell penetration into adjacent brain structures. Discoidin domain receptor 1 (DDR1) tyrosine kinases constitute a novel family of receptors characterized by a unique structure in the ectodomain (discoidin-I domain). These cell surface receptors bind to several collagens and facilitate cell adhesion. Little is known about DDR1 expression and function in glioblastoma multiforme. In this study we demonstrate that DDR1 is overexpressed in glioma tissues using cDNA arrays, immunohistochemistry and Western blot analysis. Functional comparison of two splice variants of DDR1 (DDR1a and DDR1b) reveal novel differences in cell based glioma models. Overexpression of either DDR1a or DDR1b caused increased cell attachment. However, glioma cells overexpressing DDR1a display enhanced invasion and migration. We also detect increased levels of matrix metalloproteinase-2 in DDR1a overexpressing cells as measured by zymography. Inhibition of MMP activity using MMP inhibitor suppressed DDR1a stimulated cell-invasion. Similarly, an antibody against DDR1 reduced DDR1a mediated invasion as well as the enhanced adhesion of DDR1a and DDR1b overexpressing cells. These results suggest that DDR1a plays a critical role in inducing tumor cell adhesion and invasion, and this invasive phenotype is caused by activation of matrix metalloproteinase-2.
Journal of Neurochemistry | 2006
Mattias Rickhag; Tadeusz Wieloch; Gunilla Gidö; Eskil Elmér; Morten Krogh; Joseph Murray; Scott Lohr; Hans Bitter; Daniel J. Chin; David von Schack; Mehrdad Shamloo; Karoly Nikolich
In order to identify biological processes relevant for cell death and survival in the brain following stroke, the postischemic brain transcriptome was studied by a large‐scale cDNA array analysis of three peri‐infarct brain regions at eight time points during the first 24 h of reperfusion following middle cerebral artery occlusion in the rat. K‐means cluster analysis revealed two distinct biphasic gene expression patterns that contained 44 genes (including 18 immediate early genes), involved in cell signaling and plasticity (i.e. MAP2K7, Sprouty2, Irs‐2, Homer1, GPRC5B, Grasp). The first gene induction phase occurred at 0–3 h of reperfusion, and the second at 9–15 h, and was validated by in situ hybridization. Four gene clusters displayed a progressive increase in expression over time and included 50 genes linked to cell motility, lipid synthesis and trafficking (i.e. ApoD, NPC1, G3P‐dehydrogenase1, and Choline kinase) or cell death‐regulating genes such as mitochondrial CLIC. We conclude that a biphasic transcriptional up‐regulation of the brain‐derived neurotrophic factor (BDNF)–G‐protein coupled receptor (GPCR)–mitogen‐activated protein (MAP) kinase signaling pathways occurs in surviving tissue, concomitant with a progressive and persistent activation of cell proliferation signifying tissue regeneration, which provide the means for cell survival and postischemic brain plasticity.
Cancer Research | 2006
Erik Foehr; Gustavo Lorente; Jane Kuo; Rosie Ram; Karoly Nikolich; Roman Urfer
The receptor protein tyrosine phosphatase beta (RPTPbeta) is a functional biomarker for several solid tumor types. RPTPbeta expression is largely restricted to the central nervous system and overexpressed primarily in astrocytic tumors. RPTPbeta is known to facilitate tumor cell adhesion and migration through interactions with extracellular matrix components and the growth factor pleiotrophin. Here, we show that RPTPbeta is expressed in a variety of solid tumor types with low expression in normal tissue. To assess RPTPbeta as a potential target for treatment of glioblastoma and other cancers, antibodies directed to RPTPbeta have been developed and profiled in vitro and in vivo. The recombinant extracellular domain of human short RPTPbeta was used to immunize mice and generate monoclonal antibodies that selectively recognize RPTPbeta and bind to the antigen with low nanomolar affinities. Moreover, these antibodies recognized the target on living tumor cells as measured by flow cytometry. These antibodies killed glioma cells in vitro when coupled to the cytotoxin saporin either directly or via a secondary antibody. Finally, in vivo studies showed that an anti-RPTPbeta immunotoxin (7E4B11-SAP) could significantly delay human U87 glioma tumors in a mouse xenograft model. Unconjugated 7E4B11 provides a modest but statistically significant tumor growth delay when delivered systemically in mice bearing U87 glioma tumors.