Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karoly Trombitas is active.

Publication


Featured researches published by Karoly Trombitas.


Circulation Research | 2000

Differential Expression of Cardiac Titin Isoforms and Modulation of Cellular Stiffness

Olivier Cazorla; A. Freiburg; Michiel Helmes; Thomas Centner; Mark McNabb; Yiming Wu; Karoly Trombitas; Siegfried Labeit; Henk Granzier

Extension of the I-band segment of titin gives rise to part of the diastolic force of cardiac muscle. Previous studies of human cardiac titin transcripts suggested a series of differential splicing events in the I-band segment of titin leading to the so-called N2A and N2B isoform transcripts. Here we investigated titin expression at the protein level in a wide range of mammalian species. Results indicate that the myocardium coexpresses 2 distinct titin isoforms: a smaller isoform containing the N2B element only (N2B titin) and a larger isoform with both the N2B and N2A elements (N2BA titin). The expression ratio of large N2BA to small N2B titin isoforms was found to vary greatly in different species; eg, in the left ventricle the ratio is approximately 0.05 in mouse and approximately 1.5 in pig. Differences in the expression ratio were also found between atria and ventricles and between different layers of the ventricular wall. Immunofluorescence experiments with isoform-specific antibodies suggest that coexpression of these isoforms takes place at the single-myocyte level. The diastolic properties of single cardiac myocytes isolated from various species expressing high levels of the small (rat and mouse) or large (pig) titin isoform were studied. On average, pig myocytes are significantly less stiff than mouse and rat myocytes. Gel analysis indicates that this result cannot be explained by varying amounts of titin in mouse and pig myocardium. Rather, low stiffness of pig myocytes can be explained by its high expression level of the large isoform: the longer extensible region of this isoform results in a lower fractional extension for a given sarcomere length and hence a lower force. Implications of our findings to cardiac function are discussed.


Circulation Research | 2000

Series of Exon-Skipping Events in the Elastic Spring Region of Titin as the Structural Basis for Myofibrillar Elastic Diversity

Alexandra Freiburg; Karoly Trombitas; Wolfgang Hell; Olivier Cazorla; Françoise Fougerousse; Thomas Centner; Bernhard Kolmerer; Christian Witt; Jaques S. Beckmann; Carol C. Gregorio; Henk Granzier; Siegfried Labeit

Titins are megadalton-sized filamentous polypeptides of vertebrate striated muscle. The I-band region of titin underlies the myofibrillar passive tension response to stretch. Here, we show how titins with highly diverse I-band structures and elastic properties are expressed from a single gene. The differentially expressed tandem-Ig, PEVK, and N2B spring elements of titin are coded by 158 exons, which are contained within a 106-kb genomic segment and are all subject to tissue-specific skipping events. In ventricular heart muscle, exons 101 kb apart are joined, leading to the exclusion of 155 exons and the expression of a 2.97-MDa cardiac titin N2B isoform. The atria of mammalian hearts also express larger titins by the exclusion of 90 to 100 exons (cardiac N2BA titin with 3.3 MDa). In the soleus and psoas skeletal muscles, different exon-skipping pathways produce titin transcripts that code for 3.7- and 3.35-MDa titin isoforms, respectively. Mechanical and structural studies indicate that the exon-skipping pathways modulate the fractional extensions of the tandem Ig and PEVK segments, thereby influencing myofibrillar elasticity. Within the mammalian heart, expression of different levels of N2B and N2BA titins likely contributes to the elastic diversity of atrial and ventricular myofibrils.


Biophysical Journal | 2001

Titin-Actin Interaction in Mouse Myocardium: Passive Tension Modulation and Its Regulation by Calcium/S100A1

Rob Yamasaki; M. Berri; Yiming Wu; Karoly Trombitas; Mark McNabb; Miklós Kellermayer; C. Witt; D. Labeit; Siegfried Labeit; Marion L. Greaser; Henk Granzier

Passive tension in striated muscles derives primarily from the extension of the giant protein titin. However, several studies have suggested that, in cardiac muscle, interactions between titin and actin might also contribute to passive tension. We expressed recombinant fragments representing the subdomains of the extensible region of cardiac N2B titin (tandem-Ig segments, the N2B splice element, and the PEVK domain), and assayed them for binding to F-actin. The PEVK fragment bound F-actin, but no binding was detected for the other fragments. Comparison with a skeletal muscle PEVK fragment revealed that only the cardiac PEVK binds actin at physiological ionic strengths. The significance of PEVK-actin interaction was investigated using in vitro motility and single-myocyte mechanics. As F-actin slid relative to titin in the motility assay, a dynamic interaction between the PEVK domain and F-actin retarded filament sliding. Myocyte results suggest that a similar interaction makes a significant contribution to the passive tension. We also investigated the effect of calcium on PEVK-actin interaction. Although calcium alone had no effect, S100A1, a soluble calcium-binding protein found at high concentrations in the myocardium, inhibited PEVK-actin interaction in a calcium-dependent manner. Gel overlay analysis revealed that S100A1 bound the PEVK region in vitro in a calcium-dependent manner, and S100A1 binding was observed at several sites along titins extensible region in situ, including the PEVK domain. In vitro motility results indicate that S100A1-PEVK interaction reduces the force that arises as F-actin slides relative to the PEVK domain, and we speculate that S100A1 may provide a mechanism to free the thin filament from titin and reduce titin-based tension before active contraction.


Circulation | 2002

Changes in Titin Isoform Expression in Pacing-Induced Cardiac Failure Give Rise to Increased Passive Muscle Stiffness

Yiming Wu; Stephen P. Bell; Karoly Trombitas; Christian C. Witt; Siegfried Labeit; Martin M. LeWinter; Henk Granzier

Background—Titin contains a molecular spring segment that underlies passive myocardial stiffness. Myocardium coexpresses titin isoforms with molecular spring length variants and, consequently, distinct stiffness characteristics: the stiff N2B isoform (short spring) and more compliant N2BA isoform (long spring). We tested whether changes in titin isoform expression occur in the diastolic dysfunction that accompanies heart failure. Methods and Results—We used the tachycardia-induced dilated cardiomyopathy canine model (4-week pacing) and found that control myocardium coexpresses the N2B and N2BA isoforms at similar levels, whereas in dilated cardiomyopathy the expression ratio had shifted, without affecting the amount of total titin, toward more prominent N2B expression. This shift was accompanied by elevated titin-based passive muscle stiffness. Pacing also resulted in significant upregulation of obscurin, an ≈800-kDa elastic protein with several signaling domains. Conclusions—Coexpression of titin isoforms with distinct mechanical properties allows modulation of passive stiffness via adjustment of the isoform expression ratio. The canine pacing-induced heart failure model uses this mechanism to increase myocardial stiffness. Thus, changes in titin isoform expression may play a role in diastolic dysfunction in heart failure.


Circulation Research | 1999

Mechanically Driven Contour-Length Adjustment in Rat Cardiac Titin’s Unique N2B Sequence Titin Is an Adjustable Spring

Michiel Helmes; Karoly Trombitas; Thomas Centner; Miklós Kellermayer; Siegfried Labeit; Wolfgang A. Linke; Henk Granzier

The giant elastic protein titin is largely responsible for passive forces in cardiac myocytes. A number of different titin isoforms with distinctly different structural elements within their central I-band region are expressed in human myocardium. Their coexpression has so far prevented an understanding of the respective contributions of the isoforms to myocardial elasticity. Using isoform-specific antibodies, we find in the present study that rat myocardium expresses predominantly the small N2B titin isoform, which allows us to characterize the elastic behavior of this isoform. The extensibility and force response of N2B titin were studied by using immunoelectron microscopy and by measuring the passive force-sarcomere length (SL) relation of single rat cardiac myocytes under a variety of mechanical conditions. Experimental results were compared with the predictions of a mechanical model in which the elastic titin segment behaves as two wormlike chains, the tandem immunoglobulin (Ig) segments and the PEVK segment (rich in proline [P], glutamate [E], valine [V], and lysine [K] residues), connected in series. The overall contour length was predicted from the sequence of N2B cardiac titin. According to mechanical measurements, above approximately 2.2 microm SL titins elastic segment extends beyond its predicted contour length. Immunoelectron microscopy indicates that a prominent source of this contour-length gain is the extension of the unique N2B sequence (located between proximal tandem Ig segment and PEVK), and that Ig domain unfolding is negligible. Thus, the elastic region of N2B cardiac titin consists of three mechanically distinct extensible segments connected in series: the tandem Ig segment, the PEVK segment, and the unique N2B sequence. Rate-dependent and repetitive stretch-release experiments indicate that both the contour-length gain and the recovery from it involve kinetic processes, probably unfolding and refolding within the N2B segment. As a result, the contour length of titins extensible segment depends on the rate and magnitude of the preceding mechanical perturbations. The rate of recovery from the length gain is slow, ensuring that the adjusted length is maintained through consecutive cardiac cycles and that hysteresis is minimal. Thus, as a result of the extensible properties of the unique N2B sequence, the I-band region of the N2B cardiac titin isoform functions as a molecular spring that is adjustable.


Circulation Research | 1995

The mechanically active domain of titin in cardiac muscle

Karoly Trombitas; Jian-Ping Jin; Henk Granzier

One of the main contributors to passive tension of the myocardium is titin. However, it is not exactly known what portions of this approximately 1 micron-long molecule are anchored in the sarcomere (hence, are rendered inelastic) and what portions are elastic (hence, are mechanically active in developing passive tension). We assessed the length of the elastic domain of cardiac titin by ultrastructural and mechanical methods. Single cardiac myocytes were stretched by various amounts, and while in the stretched state, they were processed for immunoelectron microscopy. Several monoclonal anti-titin antibodies were used, and the locations of the titin epitopes in the sarcomere were studied as a function of sarcomere length. Only a small fraction (5% to 10%) of the approximately 1000-nm-long molecule behaved elastically under physiological conditions. This mechanically active domain is located close to the A/I junction, and its contour length when unstretched is estimated at approximately 50 to 100 nm. In sarcomeres that are slack (length approximately 1.85 microns), the mechanically active domain is folded on top of itself, and the length of the domain reaches an elastic limit of approximately 550 nm in sarcomeres that are approximately 2.9 microns long.


Biophysical Journal | 1997

Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction

Henk Granzier; Miklós Kellermayer; Michiel Helmes; Karoly Trombitas

Titin (also known as connectin) is a giant filamentous protein whose elastic properties greatly contribute to the passive force in muscle. In the sarcomere, the elastic I-band segment of titin may interact with the thin filaments, possibly affecting the molecules elastic behavior. Indeed, several studies have indicated that interactions between titin and actin occur in vitro and may occur in the sarcomere as well. To explore the properties of titin alone, one must first eliminate the modulating effect of the thin filaments by selectively removing them. In the present work, thin filaments were selectively removed from the cardiac myocyte by using a gelsolin fragment. Partial extraction left behind approximately 100-nm-long thin filaments protruding from the Z-line, whereas the rest of the I-band became devoid of thin filaments, exposing titin. By applying a much more extensive gelsolin treatment, we also removed the remaining short thin filaments near the Z-line. After extraction, the extensibility of titin was studied by using immunoelectron microscopy, and the passive force-sarcomere length relation was determined by using mechanical techniques. Titins regional extensibility was not detectably affected by partial thin-filament extraction. Passive force, on the other hand, was reduced at sarcomere lengths longer than approximately 2.1 microm, with a 33 +/- 9% reduction at 2.6 microm. After a complete extraction, the slack sarcomere length was reduced to approximately 1.7 microm. The segment of titin near the Z-line, which is otherwise inextensible, collapsed toward the Z-line in sarcomeres shorter than approximately 2.0 microm, but it was extended in sarcomeres longer than approximately 2.3 microm. Passive force became elevated at sarcomere lengths between approximately 1.7 and approximately 2.1 microm, but was reduced at sarcomere lengths of >2.3 microm. These changes can be accounted for by modeling titin as two wormlike chains in series, one of which increases its contour length by recruitment of the titin segment near the Z-line into the elastic pool.


Biophysical Journal | 1996

Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics

Henk Granzier; Michiel Helmes; Karoly Trombitas

Titin (also known as connectin) is a muscle-specific giant protein found inside the sarcomere, spanning from the Z-line to the M-line. The I-band segment of titin is considered to function as a molecular spring that develops tension when sarcomeres are stretched (passive tension). Recent studies on skeletal muscle indicate that it is not the entire I-band segment of titin that behaves as a spring; some sections are inelastic and do not take part in the development of passive tension. To better understand the mechanism of passive tension development in the heart, where passive tension plays an essential role in the pumping function, we investigated titins elastic segment in cardiac myocytes using structural and mechanical techniques. Single cardiac myocytes were stretched by various amounts and then immunolabeled and processed for electron microscopy in the stretched state. Monoclonal antibodies that recognize different titin epitopes were used, and the locations of the titin epitopes in the sarcomere were studied as a function of sarcomere length. We found that only a small region of the I-band segment of titin is elastic; its contour length is estimated at approximately 75 nm, which is only approximately 40% of the total I-band segment of titin. Passive tension measurements indicated that the fundamental determinant of how much passive tension the heart develops is the strain of titins elastic segment. Furthermore, we found evidence that in sarcomeres that are slack (length, approximately 1.85 microns) the elastic titin segment is highly folded on top of itself. Based on the data, we propose a two-stage mechanism of passive tension development in the heart, in which, between sarcomere lengths of approximately 1.85 microns and approximately 2.0 microns, titins elastic segment straightens and, at lengths longer than approximately 2.0 microns, the molecular domains that make up titins elastic segment unravel. Sarcomere shortening to lengths below slack (approximately 1.85 microns) also results in straightening of the elastic titin segment, giving rise to a force that opposes shortening and that tends to bring sarcomeres back to their slack length.


Biophysical Journal | 1999

Molecular dissection of N2B cardiac titin's extensibility.

Karoly Trombitas; Alexandra Freiburg; Thomas Centner; Siegfried Labeit; Henk Granzier

Titin is a giant filamentous polypeptide of multidomain construction spanning between the Z- and M-lines of the cardiac muscle sarcomere. Extension of the I-band segment of titin gives rise to a force that underlies part of the diastolic force of cardiac muscle. Titins force arises from its extensible I-band region, which consists of two main segment types: serially linked immunoglobulin-like domains (tandem Ig segments) interrupted with a proline (P)-, glutamate (E)-, valine (V)-, and lysine (K)-rich segment called PEVK segment. In addition to these segments, the extensible region of cardiac titin also contains a unique 572-residue sequence that is part of the cardiac-specific N2B element. In this work, immunoelectron microscopy was used to study the molecular origin of the in vivo extensibility of the I-band region of cardiac titin. The extensibility of the tandem Ig segments, the PEVK segment, and that of the unique N2B sequence were studied, using novel antibodies against Ig domains that flank these segments. Results show that only the tandem Igs extend at sarcomere lengths (SLs) below approximately 2.0 microm, and that, at longer SLs, the PEVK and the unique sequence extend as well. At the longest SLs that may be reached under physiological conditions ( approximately 2.3 microm), the PEVK segment length is approximately 50 nm whereas the unique N2B sequence is approximately 80 nm long. Thus, the unique sequence provides additional extensibility to cardiac titins and this may eliminate the necessity for unfolding of Ig domains under physiological conditions. In summary, this work provides direct evidence that the three main molecular subdomains of N2B titin are all extensible and that their contribution to extensibility decreases in the order of tandem Igs, unique N2B sequence, and PEVK segment.


Biophysical Journal | 2000

Extensibility of Isoforms of Cardiac Titin: Variation in Contour Length of Molecular Subsegments Provides a Basis for Cellular Passive Stiffness Diversity

Karoly Trombitas; Alka Redkar; Thomas Centner; Yiming Wu; Siegfried Labeit; Henk Granzier

Titin is a giant polypeptide that spans between the Z- and M-lines of the cardiac muscle sarcomere and that develops force when extended. This force arises from titins extensible I-band region, which consists mainly of three segment types: serially linked immunoglobulin-like domains (Ig segments), interrupted by the PEVK segment, and the N2B unique sequence. Recently it was reported that the myocardium of large mammals co-expresses small (N2B) and large (N2BA) cardiac isoforms and that the passive stiffness of cardiac myocytes varies with the isoform expression ratio. To understand the molecular basis of the differences in passive stiffness we investigated titins extensibility in bovine atrium, which expresses predominantly N2BA titin, and compared it to that of rat, which expresses predominantly N2B titin. Immunoelectron microscopy was used with antibodies that flank the Ig segments, the PEVK segment, and the unique sequence of the N2B element. The extension of the various segments was then determined as a function of sarcomere length (SL). When slack sarcomeres of bovine atrium were stretched, the PEVK segment extended much more steeply and the unique N2B sequence less steeply than in rat, while the Ig segments behaved similarly in both species. However, the extensions normalized with the segments contour length (i.e., the fractional extensions) of Ig, PEVK, and unique sequence segments all increase less steeply with SL in cow than in rat. Considering that fractional extension determines the level of entropic force, these differences in fractional extension are expected to result in shallow and steep passive force-SL curves in myocytes that express high levels of N2BA and N2B titin, respectively. Thus, the findings provide a molecular basis for passive stiffness diversity.

Collaboration


Dive into the Karoly Trombitas's collaboration.

Top Co-Authors

Avatar

Henk Granzier

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Siegfried Labeit

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Yiming Wu

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michiel Helmes

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Marion L. Greaser

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siegfried Labeit

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge