Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karsten Fischer is active.

Publication


Featured researches published by Karsten Fischer.


Plant Physiology | 2003

ARAMEMNON, a Novel Database for Arabidopsis Integral Membrane Proteins

Rainer Schwacke; Anja Schneider; Eric van der Graaff; Karsten Fischer; Elisabetta Catoni; Marcelo Desimone; Wolf B. Frommer; Ulf-Ingo Flügge; Reinhard Kunze

A specialized database (DB) for Arabidopsis membrane proteins, ARAMEMNON, was designed that facilitates the interpretation of gene and protein sequence data by integrating features that are presently only available from individual sources. Using several publicly available prediction programs, putative integral membrane proteins were identified among the approximately 25,500 proteins in the Arabidopsis genome DBs. By averaging the predictions from seven programs, approximately 6,500 proteins were classified as transmembrane (TM) candidate proteins. Some 1,800 of these contain at least four TM spans and are possibly linked to transport functions. The ARAMEMNON DB enables direct comparison of the predictions of seven different TM span computation programs and the predictions of subcellular localization by eight signal peptide recognition programs. A special function displays the proteins related to the query and dynamically generates a protein family structure. As a first set of proteins from other organisms, all of the approximately 700 putative membrane proteins were extracted from the genome of the cyanobacterium Synechocystis sp. and incorporated in the ARAMEMNON DB. The ARAMEMNON DB is accessible at the URL http://aramemnon.botanik.uni-koeln.de.


The Plant Cell | 1998

Molecular Characterization of a Carbon Transporter in Plastids from Heterotrophic Tissues: The Glucose 6-Phosphate/Phosphate Antiporter

Birgit Kammerer; Karsten Fischer; Bettina Hilpert; Sabine Schubert; Michael Gutensohn; Andreas P. M. Weber; Ulf-Ingo Flügge

Plastids of nongreen tissues import carbon as a source of biosynthetic pathways and energy. Within plastids, carbon can be used in the biosynthesis of starch or as a substrate for the oxidative pentose phosphate pathway, for example. We have used maize endosperm to purify a plastidic glucose 6-phosphate/phosphate translocator (GPT). The corresponding cDNA was isolated from maize endosperm as well as from tissues of pea roots and potato tubers. Analysis of the primary sequences of the cDNAs revealed that the GPT proteins have a high degree of identity with each other but share only ~38% identical amino acids with members of both the triose phosphate/phosphate translocator (TPT) and the phosphoenolpyruvate/phosphate translocator (PPT) families. Thus, the GPTs represent a third group of plastidic phosphate antiporters. All three classes of phosphate translocator genes show differential patterns of expression. Whereas the TPT gene is predominantly present in tissues that perform photosynthetic carbon metabolism and the PPT gene appears to be ubiquitously expressed, the expression of the GPT gene is mainly restricted to heterotrophic tissues. Expression of the coding region of the GPT in transformed yeast cells and subsequent transport experiments with the purified protein demonstrated that the GPT protein mediates a 1:1 exchange of glucose 6-phosphate mainly with inorganic phosphate and triose phosphates. Glucose 6-phosphate imported via the GPT can thus be used either for starch biosynthesis, during which process inorganic phosphate is released, or as a substrate for the oxidative pentose phosphate pathway, yielding triose phosphates.


The Plant Cell | 1997

A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter.

Karsten Fischer; Birgit Kammerer; Michael Gutensohn; Bettina Arbinger; Andreas P. M. Weber; Rainer E. Häusler; Ulf-Ingo Flügge

We have purified a plastidic phosphate transport protein from maize endosperm membranes and cloned and sequenced the corresponding cDNAs from maize endosperm, maize roots, cauliflower buds, tobacco leaves, and Arabidopsis leaves. All of these cDNAs exhibit high homology to each other but only approximately 30% identity to the known chloroplast triose phosphate/phosphate translocators. The corresponding genes are expressed in both photosynthetically active tissues and in nongreen tissues, although transcripts were more abundant in nongreen tissues. Expression of the coding region in transformed yeast cells and subsequent transport measurements of the purified recombinant translocator showed that the protein mediates transport of inorganic phosphate in exchange with C3 compounds phosphorylated at C-atom 2, particularly phosphoenolpyruvate, which is required inside the plastids for the synthesis of, for example, aromatic amino acids. This plastidic phosphate transporter is thus different in structure and function from the known triose phosphate/phosphate translocator. We propose that plastids contain various phosphate translocators with overlapping substrate specificities to ensure an efficient supply of plastids with a single substrate, even in the presence of other phosphorylated metabolites.


The Plant Cell | 2005

The Arabidopsis Plastidic Glucose 6-Phosphate/Phosphate Translocator GPT1 Is Essential for Pollen Maturation and Embryo Sac Development

Patrycja Niewiadomski; Silke Knappe; Stefan Geimer; Karsten Fischer; Burkhard Schulz; Ulrike S. Unte; Mario G. Rosso; Peter Ache; Ulf-Ingo Flügge; Anja Schneider

Plastids of nongreen tissues can import carbon in the form of glucose 6-phosphate via the glucose 6-phosphate/phosphate translocator (GPT). The Arabidopsis thaliana genome contains two homologous GPT genes, AtGPT1 and AtGPT2. Both proteins show glucose 6-phosphate translocator activity after reconstitution in liposomes, and each of them can rescue the low-starch leaf phenotype of the pgi1 mutant (which lacks plastid phosphoglucoisomerase), indicating that the two proteins are also functional in planta. AtGPT1 transcripts are ubiquitously expressed during plant development, with highest expression in stamens, whereas AtGPT2 expression is restricted to a few tissues, including senescing leaves. Disruption of GPT2 has no obvious effect on growth and development under greenhouse conditions, whereas the mutations gpt1-1 and gpt1-2 are lethal. In both gpt1 lines, distorted segregation ratios, reduced efficiency of transmission in males and females, and inability to complete pollen and ovule development were observed, indicating profound defects in gametogenesis. Embryo sac development is arrested in the gpt1 mutants at a stage before the fusion of the polar nuclei. Mutant pollen development is associated with reduced formation of lipid bodies and small vesicles and the disappearance of dispersed vacuoles, which results in disintegration of the pollen structure. Taken together, our results indicate that GPT1-mediated import of glucose 6-phosphate into nongreen plastids is crucial for gametophyte development. We suggest that loss of GPT1 function results in disruption of the oxidative pentose phosphate cycle, which in turn affects fatty acid biosynthesis.


Plant Physiology | 2002

The Plastidic Pentose Phosphate Translocator Represents a Link between the Cytosolic and the Plastidic Pentose Phosphate Pathways in Plants

Michael Eicks; Veronica G. Maurino; Silke Knappe; Ulf-Ingo Flügge; Karsten Fischer

Plastids are the site of the reductive and the oxidative pentose phosphate pathways, which both generate pentose phosphates as intermediates. A plastidic transporter from Arabidopsis has been identified that is able to transport, in exchange with inorganic phosphate or triose phosphates, xylulose 5-phosphate (Xul-5-P) and, to a lesser extent, also ribulose 5-phosphate, but does not accept ribose 5-phosphate or hexose phosphates as substrates. Under physiological conditions, Xul-5-P would be the preferred substrate. Therefore, the translocator was named Xul-5-P/phosphate translocator (XPT). The XPT shares only approximately 35% to 40% sequence identity with members of both the triose phosphate translocator and the phosphoenolpyruvate/phosphate translocator classes, but a higher identity of approximately 50% to glucose 6-phosphate/phosphate translocators. Therefore, it represents a fourth group of plastidic phosphate translocators. Database analysis revealed that plant cells contain, in addition to enzymes of the oxidative branch of the oxidative pentose phosphate pathway, ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase in both the cytosol and the plastids, whereas the transketolase and transaldolase converting the produced pentose phosphates to triose phosphates and hexose phosphates are probably solely confined to plastids. It is assumed that the XPT function is to provide the plastidic pentose phosphate pathways with cytosolic carbon skeletons in the form of Xul-5-P, especially under conditions of a high demand for intermediates of the cycles.


Plant Physiology | 2003

Analysis of the Plastidic phosphate translocator Gene Family in Arabidopsis and Identification of New phosphate translocator -Homologous Transporters, Classified by Their Putative Substrate-Binding Site

Silke Knappe; Ulf-Ingo Flügge; Karsten Fischer

Analysis of the Arabidopsis genome revealed the complete set of plastidic phosphate translocator (pPT) genes. The Arabidopsis genome contains 16 pPT genes: single copies of genes coding for the triose phosphate/phosphate translocator and the xylulose phosphate/phosphate translocator, and two genes coding for each the phosphoenolpyruvate/phosphate translocator and the glucose-6-phosphate/phosphate translocator. A relatively high number of truncatedphosphoenolpyruvate/phosphate translocator genes (six) and glucose-6-phosphate/phosphate translocator genes (four) could be detected with almost conserved intron/exon structures as compared with the functional genes. In addition, a variety ofPT-homologous (PTh) genes could be identified in Arabidopsis and other organisms. They all belong to the drug/metabolite transporter superfamily showing significant similarities to nucleotide sugar transporters (NSTs). The pPT, PTh, and NST proteins all possess six to eight transmembrane helices. According to the analysis of conserved motifs in these proteins, the PTh proteins can be divided into (a) the lysine (Lys)/arginine group comprising only non-plant proteins, (b) the Lys-valine/alanine/glycine group of Arabidopsis proteins, (c) the Lys/asparagine group of Arabidopsis proteins, and (d) the Lys/threonine group of plant and non-plant proteins. None of these proteins have been characterized so far. The analysis of the putative substrate-binding sites of the pPT, PTh, and NST proteins led to the suggestion that all these proteins share common substrate-binding sites on either side of the membrane each of which contain a conserved Lys residue.


Eukaryotic Cell | 2007

Carbohydrate Metabolism in the Toxoplasma gondii Apicoplast: Localization of Three Glycolytic Isoenzymes, the Single Pyruvate Dehydrogenase Complex, and a Plastid Phosphate Translocator

Tobias Fleige; Karsten Fischer; David J. P. Ferguson; Uwe Gross; Wolfgang Bohne

ABSTRACT Many apicomplexan parasites, such as Toxoplasma gondii and Plasmodium species, possess a nonphotosynthetic plastid, referred to as the apicoplast, which is essential for the parasites’ viability and displays characteristics similar to those of nongreen plastids in plants. In this study, we localized several key enzymes of the carbohydrate metabolism of T. gondii to either the apicoplast or the cytosol by engineering parasites which express epitope-tagged fusion proteins. The cytosol contains a complete set of enzymes for glycolysis, which should enable the parasite to metabolize imported glucose into pyruvate. All the glycolytic enzymes, from phosphofructokinase up to pyruvate kinase, are present in the T. gondii genome, as duplicates and isoforms of triose phosphate isomerase, phosphoglycerate kinase, and pyruvate kinase were found to localize to the apicoplast. The mRNA expression levels of all genes with glycolytic products were compared between tachyzoites and bradyzoites; however, a strict bradyzoite-specific expression pattern was observed only for enolase I. The T. gondii genome encodes a single pyruvate dehydrogenase complex, which was located in the apicoplast and absent in the mitochondrion, as shown by targeting of epitope-tagged fusion proteins and by immunolocalization of the native pyruvate dehydrogenase complex. The exchange of metabolites between the cytosol and the apicoplast is likely to be mediated by a phosphate translocator which was localized to the apicoplast. Based on these localization studies, a model is proposed that explains the supply of the apicoplast with ATP and the reduction power, as well as the exchange of metabolites between the cytosol and the apicoplast.


Cell Host & Microbe | 2010

The toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival.

Carrie F. Brooks; Hanne R. Johnsen; Giel G. van Dooren; Mani Muthalagi; San San Lin; Wolfgang Bohne; Karsten Fischer; Boris Striepen

Apicomplexa are unicellular eukaryotic pathogens that carry a vestigial algal endosymbiont, the apicoplast. The physiological function of the apicoplast and its integration into parasite metabolism remain poorly understood and at times controversial. We establish that the Toxoplasma apicoplast membrane-localized phosphate translocator (TgAPT) is an essential metabolic link between the endosymbiont and the parasite cytoplasm. TgAPT is required for fatty acid synthesis in the apicoplast, but this may not be its most critical function. Further analyses demonstrate that TgAPT also functions to supply the apicoplast with carbon skeletons for additional pathways and, indirectly, with energy and reduction power. Genetic ablation of the transporter results in rapid death of parasites. The dramatic consequences of loss of its activity suggest that targeting TgAPT could be a viable strategy to identify antiparasitic compounds.


Molecular Genetics and Genomics | 2007

Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice

Rainer Schwacke; Karsten Fischer; Bernd Ketelsen; Karin Krupinska; Kirsten Krause

A group of nuclear transcription factors, the Whirly proteins, were recently shown to be targeted also to chloroplasts and mitochondria. In order to find out whether other proteins might share this feature, an in silico-based screening of transcription factors from Arabidopsis and rice was carried out with the aim of identifying putative N-terminal chloroplast and mitochondrial targeting sequences. For this, the individual predictions of several independent programs were combined to a consensus prediction using a naïve Bayes method. This consensus prediction shows a higher specificity at a given sensitivity value than each of the single programs. In both species, transcription factors from a variety of protein families that possess putative N-terminal plastid or mitochondrial target peptides as well as nuclear localization sequences, were found. A search for homologues within members of the AP2/EREBP protein family revealed that target peptide-containing proteins are conserved among monocotyledonous and dicotyledonous species. Fusion of one of these proteins to GFP revealed, indeed, a dual targeting activity of this protein. We propose that dually targeted transcription factors might be involved in the communication between the nucleus and the organelles in plant cells. We further discuss how recent results on the physical interaction between the organelles and the nucleus could have significance for the regulation of the localization of these proteins.


Trends in Plant Science | 2002

Transport of carbon in non-green plastids

Karsten Fischer; Andreas P. M. Weber

Non-green plastids are important sites for the biosynthesis of starch and fatty acids, which are essential for plant development and reproduction, and have a significant role in human nutrition. Unlike chloroplasts, all the metabolites for these processes in non-green plastids have to be imported via specific transport proteins. Recent advances in unravelling the molecular structures and substrate specificities of the transporters connecting the biochemical pathways between cytosol and stroma now make it possible to develop models for metabolic fluxes in these pathways. The basic principle of adapting the transport capacities of the plastid envelope to the physiological needs of the plant is the variable production of closely related transporters with overlapping substrate specificities.

Collaboration


Dive into the Karsten Fischer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge