Karsten Häffner
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karsten Häffner.
Nature Genetics | 2002
Heike Olbrich; Karsten Häffner; Andreas Kispert; Alexander Völkel; Andreas Volz; Gürsel Sasmaz; Richard Reinhardt; Steffen Hennig; Hans Lehrach; Nikolaus Konietzko; Maimoona A. Zariwala; Peadar G. Noone; Hannah M. Mitchison; Maggie Meeks; Eddie M. K. Chung; Friedhelm Hildebrandt; Ralf Sudbrak; Heymut Omran
Primary ciliary dyskinesia (PCD, MIM 242650) is characterized by recurrent infections of the respiratory tract due to reduced mucociliary clearance and by sperm immobility. Half of the affected offspring have situs inversus (reversed organs), which results from randomization of left-right (LR) asymmetry. We previously localized to chromosome 5p a PCD locus containing DNAH5, which encodes a protein highly similar to the Chlamydomonas γ-dynein heavy chain. Here we characterize the full-length 14-kb transcript of DNAH5. Sequence analysis in individuals with PCD with randomization of LR asymmetry identified mutations resulting in non-functional DNAH5 proteins.
American Journal of Human Genetics | 2009
Niki T. Loges; Heike Olbrich; Anita Becker-Heck; Karsten Häffner; Angelina Heer; Christina Reinhard; Miriam Schmidts; Andreas Kispert; Maimoona A. Zariwala; Margaret W. Leigh; Hanswalter Zentgraf; Horst Seithe; Gudrun Nürnberg; Peter Nürnberg; Richard Reinhardt; Heymut Omran
Genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility in primary ciliary dyskinesia (PCD). The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Here, we demonstrate that large genomic deletions, as well as point mutations involving LRRC50, are responsible for a distinct PCD variant that is characterized by a combined defect involving assembly of the ODAs and IDAs. Functional analyses showed that LRRC50 deficiency disrupts assembly of distally and proximally DNAH5- and DNAI2-containing ODA complexes, as well as DNALI1-containing IDA complexes, resulting in immotile cilia. On the basis of these findings, we assume that LRRC50 plays a role in assembly of distinct dynein-arm complexes.
Nature Genetics | 2012
Jennifer R. Panizzi; Anita Becker-Heck; Victoria H. Castleman; Dalal A Al-Mutairi; Yan Liu; Niki T. Loges; Narendra Pathak; Christina Austin-Tse; Eamonn Sheridan; Miriam Schmidts; Heike Olbrich; Claudius Werner; Karsten Häffner; Nathan Hellman; Rahul Chodhari; Amar Gupta; Albrecht Kramer-Zucker; Felix Olale; Rebecca D. Burdine; Alexander F. Schier; Christopher J. O'Callaghan; Eddie M. K. Chung; Richard Reinhardt; Hannah M. Mitchison; Stephen M. King; Heymut Omran; Iain A. Drummond
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000–30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci. Here we show that the zebrafish cilia paralysis mutant schmalhans (smhtn222) encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated.
American Journal of Human Genetics | 2013
Rim Hjeij; Anna Lindstrand; Richard Francis; Maimoona A. Zariwala; Xiaoqin Liu; You Li; Rama Rao Damerla; Gerard W. Dougherty; Marouan Abouhamed; Heike Olbrich; Niki T. Loges; Petra Pennekamp; Erica E. Davis; Claudia M.B. Carvalho; Davut Pehlivan; Claudius Werner; Johanna Raidt; Gabriele Köhler; Karsten Häffner; Miguel Reyes-Múgica; James R. Lupski; Margaret W. Leigh; Margaret Rosenfeld; Lucy Morgan; Cecilia W. Lo; Nicholas Katsanis; Heymut Omran
The motive forces for ciliary movement are generated by large multiprotein complexes referred to as outer dynein arms (ODAs), which are preassembled in the cytoplasm prior to transport to the ciliary axonemal compartment. In humans, defects in structural components, docking complexes, or cytoplasmic assembly factors can cause primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease and defects in laterality. By using combined high resolution copy-number variant and mutation analysis, we identified ARMC4 mutations in twelve PCD individuals whose cells showed reduced numbers of ODAs and severely impaired ciliary beating. Transient suppression in zebrafish and analysis of an ENU mouse mutant confirmed in both model organisms that ARMC4 is critical for left-right patterning. We demonstrate that ARMC4 is an axonemal protein that is necessary for proper targeting and anchoring of ODAs.
European Respiratory Journal | 2014
Johanna Raidt; Julia Wallmeier; Rim Hjeij; Jörg Große Onnebrink; Petra Pennekamp; Niki T. Loges; Heike Olbrich; Karsten Häffner; Gerard W. Dougherty; Heymut Omran; Claudius Werner
Primary ciliary dyskinesia (PCD) is a rare genetic disorder leading to recurrent respiratory tract infections. High-speed video-microscopy analysis (HVMA) of ciliary beating, currently the first-line diagnostic tool for PCD in most centres, is challenging because recent studies have expanded the spectrum of HVMA findings in PCD from grossly abnormal to very subtle. The objective of this study was to describe the diversity of HVMA findings in genetically confirmed PCD individuals. HVMA was performed as part of the routine work-up of individuals with suspected PCD. Subsequent molecular analysis identified biallelic mutations in the PCD-related genes of 66 individuals. 1072 videos of these subjects were assessed for correlation with the genotype. Biallelic mutations (19 novel) were found in 17 genes: DNAI1, DNAI2, DNAH5, DNAH11, CCDC103, ARMC4, KTU/DNAAF2, LRRC50/DNAAF1, LRRC6, DYX1C1, ZMYND10, CCDC39, CCDC40, CCDC164, HYDIN, RSPH4A and RSPH1. Ciliary beat pattern variations correlated well with the genetic findings, allowing the classification of typical HVMA findings for different genetic groups. In contrast, analysis of ciliary beat frequency did not result in additional diagnostic impact. In conclusion, this study provides detailed knowledge about the diversity of HVMA findings in PCD and may therefore be seen as a guide to the improvement of PCD diagnostics. PCD is associated with a variety of ciliary beat pattern abnormalities which correlate with genetic subtypes http://ow.ly/zh5jP
American Journal of Respiratory Cell and Molecular Biology | 2016
Gerard W. Dougherty; Niki T. Loges; Judith A. Klinkenbusch; Heike Olbrich; Petra Pennekamp; Tabea Menchen; Johanna Raidt; Julia Wallmeier; Claudius Werner; Cordula Westermann; Christian Ruckert; Virginia Mirra; Rim Hjeij; Yasin Memari; Richard Durbin; Anja Kolb-Kokocinski; Kavita Praveen; Mohammad Amin Kashef; Sara Kashef; Fardin Eghtedari; Karsten Häffner; Pekka Valmari; György Baktai; Micha Aviram; Lea Bentur; Israel Amirav; Erica E. Davis; Nicholas Katsanis; Martina Brueckner; Artem Shaposhnykov
Primary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood. We therefore characterized DNAH11 in human respiratory cilia by immunofluorescence microscopy (IFM) in the context of PCD. We used whole-exome and targeted next-generation sequence analysis as well as Sanger sequencing to identify and confirm eight novel loss-of-function DNAH11 mutations. We designed and validated a monoclonal antibody specific to DNAH11 and performed high-resolution IFM of both control and PCD-affected human respiratory cells, as well as samples from green fluorescent protein (GFP)-left-right dynein mice, to determine the ciliary localization of DNAH11. IFM analysis demonstrated native DNAH11 localization in only the proximal region of wild-type human respiratory cilia and loss of DNAH11 in individuals with PCD with certain loss-of-function DNAH11 mutations. GFP-left-right dynein mice confirmed proximal DNAH11 localization in tracheal cilia. DNAH11 retained proximal localization in respiratory cilia of individuals with PCD with distinct ultrastructural defects, such as the absence of outer dynein arms (ODAs). TEM tomography detected a partial reduction of ODAs in DNAH11-deficient cilia. DNAH11 mutations result in a subtle ODA defect in only the proximal region of respiratory cilia, which is detectable by IFM and TEM tomography.
Pediatric Nephrology | 2014
Henry Fehrenbach; Christian Decker; Tobias Eisenberger; Valeska Frank; Tobias Hampel; Ulrike Walden; Kerstin Amann; Ingrid Krüger-Stollfuß; Hanno J. Bolz; Karsten Häffner; Martin Pohl; Carsten Bergmann
BackgroundAn emerging number of clinically and genetically heterogeneous diseases now collectively termed ciliopathies have been connected to the dysfunction of primary cilia. We describe an 8-year-old girl with a complex phenotype that did not clearly match any familiar syndrome.Case-Diagnosis/TreatmentHypotonia, facial dysmorphism and retardation were noted shortly after birth. Other features included short stature, mild skeletal anomalies, strabism, deafness, subdural hygroma, hepatosplenomegaly and end-stage renal failure. Renal biopsy revealed tubular atrophy, interstitial fibrosis and segmental glomerulosclerosis. After exclusion of a chromosomal abnormality by array-comparative genomic hybridization (CGH), we performed next-generation sequencing (NGS) using a customized panel that targeted 131 genes known or hypothesized to cause ciliopathies. We identified the novel homozygous WDR19 mutation c.1483G > C (p.Gly495Arg) that affects an evolutionarily highly conserved residue in the intraflagellar transport protein IFT144, is absent from databases and is predicted to be pathogenic by all bioinformatic sources used.ConclusionMutations in WDR19 encoding the intraflagellar transport component IFT144 have recently been described in single families with the clinically overlapping skeletal ciliopathies Jeune and Sensenbrenner syndromes, combined or isolated nephronophthisis (NPHP) and retinitis pigmentosa (RP) (Senior–Loken syndrome). Our patient emphasizes the usefulness and efficiency of a comprehensive NGS panel approach in patients with unclassified ciliopathies. It further suggests that WDR19 mutations can cause a broad spectrum of ciliopathies that extends to Jeune and Sensenbrenner syndromes, RP and renal NPHP-like phenotypes.
Pediatric Nephrology | 2005
Karsten Häffner; Lothar Bernd Zimmerhackl; Christian von Schnakenburg; Matthias Brandis; Martin Pohl
Focal segmental glomerulosclerosis (FSGS) is known to recur in approximately 30% of renal allografts with graft loss in about half of these cases. The exact etiology remains unclear, though a putative circulating permeability factor or loss of inhibitory substances is being discussed. Different therapeutic approaches have been used. We report on a 10-year-old Arabian boy with a recurrence of FSGS immediately after transplantation. In addition to intensifying immunosuppressive therapy with high-dose cyclosporin A and cyclophosphamide, plasmapheresis was initiated and remission was achieved after 8 months. Three weeks after cessation of plasmapheresis a relapse occurred. Plasmapheresis was resumed and remission was achieved again after four additional sessions. The interval between plasmapheresis treatments was then gradually increased and fourteen months after transplantation plasmapheresis was stopped again. Since then (1.5 years after cessation of treatment) the patient has been in complete remission without any further episode of proteinuria. In conclusion, complete and sustained remission with stable renal function was achieved in our patient by long-term plasmapheresis in combination with intensified immunosuppression. Therefore, continuation of plasmapheresis treatment should be considered even in the situation of initial non-response.
Clinical Journal of The American Society of Nephrology | 2017
Jens König; Birgitta Kranz; Sabine König; Karl P. Schlingmann; Andrea Titieni; Burkhard Tönshoff; Sandra Habbig; Lars Pape; Karsten Häffner; Matthias Hansen; Anja K. Büscher; Martin Bald; Heiko Billing; Raphael Schild; Ulrike Walden; Tobias Hampel; Hagen Staude; Magdalena Riedl; Norbert Gretz; Martin Lablans; Carsten Bergmann; Friedhelm Hildebrandt; Heymut Omran; Martin Konrad
BACKGROUND AND OBJECTIVES Genetic heterogeneity and phenotypic variability are major challenges in familial nephronophthisis and related ciliopathies. To date, mutations in 20 different genes (NPHP1 to -20) have been identified causing either isolated kidney disease or complex multiorgan disorders. In this study, we provide a comprehensive and detailed characterization of 152 children with a special focus on extrarenal organ involvement and the long-term development of ESRD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We established an online-based registry (www.nephreg.de) to assess the clinical course of patients with nephronophthisis and related ciliopathies on a yearly base. Cross-sectional and longitudinal data were collected. Mean observation time was 7.5±6.1 years. RESULTS In total, 51% of the children presented with isolated nephronophthisis, whereas the other 49% exhibited related ciliopathies. Monogenetic defects were identified in 97 of 152 patients, 89 affecting NPHP genes. Eight patients carried mutations in other genes related to cystic kidney diseases. A homozygous NPHP1 deletion was, by far, the most frequent genetic defect (n=60). We observed a high prevalence of extrarenal manifestations (23% [14 of 60] for the NPHP1 group and 66% [61 of 92] for children without NPHP1). A homozygous NPHP1 deletion not only led to juvenile nephronophthisis but also was able to present as a predominantly neurologic phenotype. However, irrespective of the initial clinical presentation, the kidney function of all patients carrying NPHP1 mutations declined rapidly between the ages of 8 and 16 years, with ESRD at a mean age of 11.4±2.4 years. In contrast within the non-NPHP1 group, there was no uniform pattern regarding the development of ESRD comprising patients with early onset and others preserving normal kidney function until adulthood. CONCLUSIONS Mutations in NPHP genes cause a wide range of ciliopathies with multiorgan involvement and different clinical outcomes.
Journal of The American Society of Nephrology | 2018
Stefan Michelfelder; Friedericke Fischer; Astrid Wäldin; Kim V. Hörle; Martin Pohl; Juliana Parsons; Ralf Reski; Eva L. Decker; Peter F. Zipfel; Christine Skerka; Karsten Häffner
The complement system is essential for host defense, but uncontrolled complement system activation leads to severe, mostly renal pathologies, such as atypical hemolytic uremic syndrome or C3 glomerulopathy. Here, we investigated a novel combinational approach to modulate complement activation by targeting C3 and the terminal pathway simultaneously. The synthetic fusion protein MFHR1 links the regulatory domains of complement factor H (FH) with the C5 convertase/C5b-9 inhibitory fragment of the FH-related protein 1. In vitro, MFHR1 showed cofactor and decay acceleration activity and inhibited C5 convertase activation and C5b-9 assembly, which prevented C3b deposition and reduced C3a/C5a and C5b-9 generation. Furthermore, this fusion protein showed the ability to escape deregulation by FH-related proteins and form multimeric complexes with increased inhibitory activity. In addition to substantially inhibiting alternative and classic pathway activation, MFHR1 blocked hemolysis mediated by serum from a patient with aHUS expressing truncated FH. In FH-/- mice, MFHR1 administration augmented serum C3 levels, reduced abnormal glomerular C3 deposition, and ameliorated C3 glomerulopathy. Taking the unique design of MFHR1 into account, we suggest that the combination of proximal and terminal cascade inhibition together with the ability to form multimeric complexes explain the strong inhibitory capacity of MFHR1, which offers a novel basis for complement therapeutics.