Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karsten Hoechstetter is active.

Publication


Featured researches published by Karsten Hoechstetter.


The Journal of Neuroscience | 2004

Localizing P300 Generators in Visual Target and Distractor Processing: A Combined Event-Related Potential and Functional Magnetic Resonance Imaging Study

Christoph Bledowski; David Prvulovic; Karsten Hoechstetter; Michael Scherg; Michael Wibral; Rainer Goebel; David Edmund Johannes Linden

Constraints from functional magnetic resonance imaging (fMRI) were used to identify the sources of the visual P300 event-related potential (ERP). Healthy subjects performed a visual three-stimulus oddball paradigm with a difficult discrimination task while fMRI and high-density ERP data were acquired in separate sessions. This paradigm allowed us to differentiate the P3b component of the P300, which has been implicated in the detection of rare events in general (target and distractor), from the P3a component, which is mainly evoked by distractor events. The fMRI-constrained source model explained >99% of the variance of the scalp ERP for both components. The P3b was mainly produced by parietal and inferior temporal areas, whereas frontal areas and the insula contributed mainly to the P3a. This source model reveals that both higher visual and supramodal association areas contribute to the visual P3b and that the P3a has a strong frontal contribution, which is compatible with its more anterior distribution on the scalp. The results point to the involvement of distinct attentional subsystems in target and distractor processing.


Brain Topography | 2003

BESA Source Coherence: A New Method to Study Cortical Oscillatory Coupling

Karsten Hoechstetter; Harald Bornfleth; Dieter Weckesser; Nicole Ille; Patrick Berg; Michael Scherg

This paper introduces source coherence, a new method for the analysis of cortical coherence using noninvasive EEG and MEG data. Brain electrical source analysis (BESA) is applied to create a discrete multiple source model. This model is used as a source montage to transform the recorded data from sensor level into brain source space. This provides source waveforms of the modeled brain regions as a direct measure for their activities on a single trial basis. The source waveforms are transformed into time-frequency space using complex demodulation. Magnitude-squared coherence between the brain sources reveals oscillatory coupling between sources. This procedure allows one to separate the time-frequency content of different brain regions even if their activities severely overlap at the surface. Thus, source coherence overcomes problems of localization and interpretation that are inherent to coherence analysis at sensor level. The principle of source coherence is illustrated using an EEG recording of an error-related negativity as an example. In this experiment the subject performed a visuo-motor task. Source coherence analysis revealed dynamical linking between posterior and central areas within the gamma-band around the time of button press at a post-stimulus latency of 200-300 ms.


The Journal of Neuroscience | 2006

Mental chronometry of working memory retrieval: a combined functional magnetic resonance imaging and event-related potentials approach

Christoph Bledowski; Kathrin Cohen Kadosh; Michael Wibral; Benny Rahm; Robert A. Bittner; Karsten Hoechstetter; Michael Scherg; Konrad Maurer; Rainer Goebel; David Edmund Johannes Linden

We used the combination of functional magnetic resonance imaging and event-related potentials to decompose the processing stages (mental chronometry) of working memory retrieval. Our results reveal an early transient activation of inferotemporal cortex, which was accompanied by the onset of a sustained activation of posterior parietal cortex. We furthermore observed late transient responses in ventrolateral prefrontal cortex and late sustained activity in medial frontal and premotor areas. We propose that these neural signatures reflect the cognitive stages of task processing, perceptual evaluation (inferotemporal cortex), storage buffer operations (posterior parietal cortex), active retrieval (ventrolateral prefrontal cortex), and action selection (medial frontal and premotor cortex). This is also supported by their differential temporal contribution to specific subcomponents of the P300 cognitive potential.


NeuroImage | 2007

Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex.

Vladimir Litvak; Soile Komssi; Michael Scherg; Karsten Hoechstetter; Joseph Classen; Menashe Zaaroor; Hillel Pratt; Seppo Kähkönen

Analyzing the brain responses to transcranial magnetic stimulation (TMS) using electroencephalography (EEG) is a promising method for the assessment of functional cortical connectivity and excitability of areas accessible to this stimulation. However, until now it has been difficult to analyze the EEG responses during the several tens of milliseconds immediately following the stimulus due to TMS-induced artifacts. In the present study we show that by combining a specially adapted recording system with software artifact correction it is possible to remove a major part of the artifact and analyze the cortical responses as early as 10 ms after TMS. We used this methodology to examine responses of left and right primary motor cortex (M1) to TMS at different intensities. Based on the artifact-corrected data we propose a model for the cortical activation following M1 stimulation. The model revealed the same basic response sequence for both hemispheres. A large part of the response could be accounted for by two sources: a source close to the stimulation site (peaking approximately 15 ms after the stimulus) and a midline frontal source ipsilateral to the stimulus (peaking approximately 25 ms). In addition the model suggests responses in ipsilateral temporo-parietal junction areas (approximately 35 ms) and ipsilateral (approximately 30 ms) and middle (approximately 50 ms) cerebellum. Statistical analysis revealed significant dependence on stimulation intensity for the ipsilateral midline frontal source. The methodology developed in the present study paves the way for the detailed study of early responses to TMS in a wide variety of brain areas.


NeuroImage | 2008

Novelty and target processing during an auditory novelty oddball: A simultaneous event-related potential and functional magnetic resonance imaging study

Alexander Strobel; Stefan Debener; Bettina Sorger; Judith Peters; Cornelia Kranczioch; Karsten Hoechstetter; Andreas K. Engel; Burkhard Brocke; Rainer Goebel

Recent evidence suggests that both spatiotemporally distinct and overlapping brain regions are involved in bottom-up- and top-down-driven attentional processing. However, existing studies are based on a variety of different approaches, including electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), raising the question of how EEG and fMRI findings in this field are related to each other. The present study aimed at disentangling common from specific regions underlying bottom-up novelty-processing and top-down target-processing. Simultaneous EEG and fMRI recordings were employed to investigate how fMRI-identified brain regions contribute to event-related potential (ERP) signatures of novelty- and target-processing. Fourteen subjects performed a modified novelty oddball task in which either rare tones or novel sounds served as targets in different blocks, allowing us to separate novelty-related from mere distractor-related effects. ERP signatures of novelty- and target-processing could be identified, confirming previous research based on recordings outside the scanner. fMRI analyses revealed that, despite considerable overlap of regions activated during novelty- and target-processing, bilateral superior temporal and right inferior frontal areas showed pronounced activation related to novelty-processing. fMRI-informed ERP dipole seeding was used to integrate both signals. The source modeling results further implicated temporal and inferior frontal sources in novelty-processing. Target-related fMRI activation on the other hand was confirmed in a network comprising distributed frontoparietal regions as well as bilateral caudate nucleus and cerebellum. Most regions identified by fMRI showed a contribution to target-related ERP signatures. This pattern of findings underscores the potential of simultaneous EEG/fMRI recordings for the spatiotemporal characterization of target- and novelty-processing.


Human Brain Mapping | 2012

Spontaneous and visually driven high-frequency oscillations in the occipital cortex: intracranial recording in epileptic patients.

Tetsuro Nagasawa; Csaba Juhász; Robert Rothermel; Karsten Hoechstetter; Sandeep Sood; Eishi Asano

High‐frequency oscillations (HFOs) at ≥80 Hz of nonepileptic nature spontaneously emerge from human cerebral cortex. In 10 patients with extraoccipital lobe epilepsy, we compared the spectral‐spatial characteristics of HFOs spontaneously arising from the nonepileptic occipital cortex with those of HFOs driven by a visual task as well as epileptogenic HFOs arising from the extraoccipital seizure focus. We identified spontaneous HFOs at ≥80 Hz with a mean duration of 330 ms intermittently emerging from the occipital cortex during interictal slow‐wave sleep. The spectral frequency band of spontaneous occipital HFOs was similar to that of visually driven HFOs. Spontaneous occipital HFOs were spatially sparse and confined to smaller areas, whereas visually driven HFOs involved the larger areas including the more rostral sites. Neither spectral frequency band nor amplitude of spontaneous occipital HFOs significantly differed from those of epileptogenic HFOs. Spontaneous occipital HFOs were strongly locked to the phase of delta activity, but the strength of δ‐phase coupling decayed from 1 to 3 Hz. Conversely, epileptogenic extraoccipital HFOs were locked to the phase of delta activity about equally in the range from 1 to 3 Hz. The occipital cortex spontaneously generates physiological HFOs which may stand out on electrocorticography traces as prominently as pathological HFOs arising from elsewhere; this observation should be taken into consideration during presurgical evaluation. Coupling of spontaneous delta and HFOs may increase the understanding of significance of δ‐oscillations during slow‐wave sleep. Further studies are warranted to determine whether δ‐phase coupling distinguishes physiological from pathological HFOs or simply differs across anatomical locations. Hum Brain Mapp , 2012.


NeuroImage | 2001

Interaction of Tactile Input in the Human Primary and Secondary Somatosensory Cortex—A Magnetoencephalographic Study

Karsten Hoechstetter; André Rupp; Andrej Stancak; Hans-Michael Meinck; Christoph Stippich; Patrick Berg; Michael Scherg

Interaction of simultaneous tactile input at two finger sites in primary (SI) and secondary somatosensory cortex (SII) was studied by whole-head magnetoencephalography. Short pressure pulses were delivered to fingers of the right and left hand at an interstimulus interval of 1.6 s. The first phalanx of the left digit 1 and four other sites were stimulated either separately or simultaneously. We compared four sites with increasing distance: the second phalanx of left digit 1, left digit 5, and digits 1 and 5 of the right hand. The temporal evolution of source activity in the contralateral SI and bilateral SII was calculated using spatiotemporal source analysis. Interaction was assessed by comparing the source activity during simultaneous stimulation with the sum of the source activities elicited by separate stimulation. Significant suppressive interaction was observed in contralateral SI only for stimuli at the same hand, decreasing with distance. In SII, all digits of the same and the opposite hand interacted significantly with left digit 1. When stimulating bilaterally, SII source waveforms closely resembled the time course of the response to separate stimulation of the opposite hand. Thus, in bilateral simultaneous stimulation, the contralateral input arriving first in SII appeared to inhibit the later ipsilateral input. Similarly, the separate response to input at two unilateral finger sites which arrived slightly earlier in SII dominated the simultaneous response. Our results confirm previous findings of considerable overlap in the cortical hand representation in SII and illustrate hemispheric specialization to contralateral input when simultaneous stimuli occur bilaterally.


NeuroImage | 2008

In-Vivo Animation of Auditory-Language-Induced Gamma-Oscillations in Children with Intractable Focal Epilepsy

Erik C. Brown; Robert Rothermel; Masaaki Nishida; Csaba Juhász; Otto Muzik; Karsten Hoechstetter; Sandeep Sood; Harry T. Chugani; Eishi Asano

We determined if high-frequency gamma-oscillations (50- to 150-Hz) were induced by simple auditory communication over the language network areas in children with focal epilepsy. Four children (aged 7, 9, 10 and 16 years) with intractable left-hemispheric focal epilepsy underwent extraoperative electrocorticography (ECoG) as well as language mapping using neurostimulation and auditory-language-induced gamma-oscillations on ECoG. The audible communication was recorded concurrently and integrated with ECoG recording to allow for accurate time lock on ECoG analysis. In three children, who successfully completed the auditory-language task, high-frequency gamma-augmentation sequentially involved: i) the posterior superior temporal gyrus when listening to the question, ii) the posterior lateral temporal region and the posterior frontal region in the time interval between question completion and the patients vocalization, and iii) the pre- and post-central gyri immediately preceding and during the patients vocalization. The youngest child, with attention deficits, failed to cooperate during the auditory-language task, and high-frequency gamma-augmentation was noted only in the posterior superior temporal gyrus when audible questions were given. The size of language areas suggested by statistically significant high-frequency gamma-augmentation was larger than that defined by neurostimulation. The present method can provide in vivo imaging of electrophysiological activities over the language network areas during language processes. Further studies are warranted to determine whether recording of language-induced gamma-oscillations can supplement language mapping using neurostimulation in presurgical evaluation of children with focal epilepsy.


Neuroreport | 2000

Magnetic source imaging of tactile input shows task-independent attention effects in SII.

Karsten Hoechstetter; André Rupp; Hans-Michael Meinck; Dieter Weckesser; Harald Bornfleth; Christoph Stippich; Patrick Berg; Michael Scherg

We investigated whether attention to different stimulus attributes (location, intensity) has different effects on the activity of the secondary (SII) somatosensory cortex. Tactile stimuli were applied to the left index finger and somatosensory evoked fields (SEFs) were recorded using a whole-head magnetoencephalography (MEG) system. Two oddball paradigms with stimuli varying in location or intensity were performed in an ignore and an attend condition. Brain sources were estimated by magnetic source imaging. No attention effect was observed for the primary SI area. However, attention enhanced SII activity bilaterally from 55 to 130 ms by 52% in the spatial and 64% in the intensity discrimination task. SII attentional enhancement was very similar in both paradigms and occurred both for deviants and standards.


Clinical Neurophysiology | 2011

Gamma-oscillations modulated by picture naming and word reading: Intracranial recording in epileptic patients

Helen C. Wu; Tetsuro Nagasawa; Erik C. Brown; Csaba Juhász; Robert Rothermel; Karsten Hoechstetter; Aashit Shah; Sandeep Mittal; Darren R. Fuerst; Sandeep Sood; Eishi Asano

OBJECTIVE We measured cortical gamma-oscillations in response to visual-language tasks consisting of picture naming and word reading in an effort to better understand human visual-language pathways. METHODS We studied six patients with focal epilepsy who underwent extraoperative electrocorticography (ECoG) recording. Patients were asked to overtly name images presented sequentially in the picture naming task and to overtly read written words in the reading task. RESULTS Both tasks commonly elicited gamma-augmentation (maximally at 80-100 Hz) on ECoG in the occipital, inferior-occipital-temporal and inferior-Rolandic areas, bilaterally. Picture naming, compared to reading task, elicited greater gamma-augmentation in portions of pre-motor areas as well as occipital and inferior-occipital-temporal areas, bilaterally. In contrast, word reading elicited greater gamma-augmentation in portions of bilateral occipital, left occipital-temporal and left superior-posterior-parietal areas. Gamma-attenuation was elicited by both tasks in portions of posterior cingulate and ventral premotor-prefrontal areas bilaterally. The number of letters in a presented word was positively correlated to the degree of gamma-augmentation in the medial occipital areas. CONCLUSIONS Gamma-augmentation measured on ECoG identified cortical areas commonly and differentially involved in picture naming and reading tasks. Longer words may activate the primary visual cortex for the more peripheral field. SIGNIFICANCE The present study increases our understanding of the visual-language pathways.

Collaboration


Dive into the Karsten Hoechstetter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Wibral

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eishi Asano

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge