Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karsten Kalbitz is active.

Publication


Featured researches published by Karsten Kalbitz.


Soil Science | 2000

Controls on the dynamics of dissolved organic matter in soils: a review.

Karsten Kalbitz; Stephan Solinger; Ji-Hyung Park; Beate Michalzik; Egbert Matzner

Dissolved organic matter (DOM) in soils plays an important role in the biogeochemistry of carbon, nitrogen, and phosphorus, in pedogenesis, and in the transport of pollutants in soils. The aim of this review is to summarize the recent literature about controls on DOM concentrations and fluxes in soi


Geoderma | 2003

Controls of bioavailability and biodegradability of dissolved organic matter in soils

Bernd Marschner; Karsten Kalbitz

Abstract In soils, dissolved organic matter (DOM) is probably the most bioavailable fraction of soil organic matter, since all microbial uptake mechanisms require a water environment. Bioavailability describes the potential of microorganisms to interact with DOM. It is a prerequisite for biodegradation and can be restricted, if DOM is present in small pores or within soil aggregates and therefore not accessible for microorganisms. DOM biodegradation is defined as the utilisation of organic compounds by soil microorganisms quantified by the disappearance of DOM or O2 or by the evolution of CO2. The controlling factors for DOM biodegradability can be divided into three groups, namely, intrinsic DOM quality parameters, soil and solution parameters and external factors. DOM characteristics that generally enhance its biodegradability are high contents of carbohydrates, organic acids and proteins for which the hydrophilic neutral fraction seems to be a good estimate. In contrast, aromatic and hydrophobic structures that can also be assessed by UV absorbance decrease DOM biodegradability, either due to their recalcitrance or due to inhibiting effects on enzyme activity. Effects of solution parameters such as Al, Fe, Ca and heavy metal concentrations on DOM biodegradability have been documented in various studies, however with different, sometimes conflicting results. Inhibitory effects of metals are generally attributed to toxicity of the organic complexes or the free metal ions. In contrast, the enhanced degradability observed in the presence of metal ions may be due to flocculation, as larger structures will provide better attachment for microbial colonies. As degradation is dependent on microbial activity, the composition and density of the microbial population used in the degradation studies also influence biodegradation. Site-specific factors, such as vegetation, land use and seasonality of meteorological parameters control DOM composition and soil and soil solution properties and therefore also affect its biodegradability. The major obstacle for a better understanding of the controls of DOM biodegradability is the lack of a standardised methodology or at least systematic comparisons between the large number of methods used to assess DOM biodegradability.


Biogeochemistry | 2001

Fluxes and concentrations of dissolved organic carbon and nitrogen - a synthesis for temperate forests

Beate Michalzik; Karsten Kalbitz; Ji-Hyung Park; Stephan Solinger; Egbert Matzner

Dissolved organic carbon (DOC) and nitrogen (DON)represent an important part of the C and N cycles inforest ecosystems. Little is known about the controlson fluxes and concentrations of these compounds insoils under field conditions. Here we compiledpublished data on concentrations and fluxes of DOC andDON from 42 case studies in forest ecosystems of thetemperate zone in order to evaluate controls on alarger temporal and spatial scale. The focus was onannual fluxes and concentrations in throughfall,forest floor leachates and soil solutions. In allcompartments considered, concentrations and fluxesdiffered widely between the sites. Highestconcentrations of DOC and DON were generally observedin forest floor leachates and in A horizons. Highestfluxes occurred in forest floor leachates. The fluxesof DOC and DON in forest floor leachates increasedwith increasing annual precipitation and were alsopositively related to DOC and DON fluxes withthroughfall. Variation in throughfall fluxes couldexplain 46% and 65% of the variation in DOC and DONfluxes from the forest floor, respectively. No generaldifference in DOC and DON concentrations and fluxes inforest floor leachates was found when comparingconiferous and hardwood sites. Concentrations of DOCin forest floor leachates were positively correlatedto the pH of the forest floor. Furthermore, there wasno relationship between organic C and N stocks, soilC/N, litterfall or mineral N inputs and concentrationsand fluxes of DOC and DON in forest floor leachates.Including all compartments, fluxes of DOC and DON werehighly correlated. Ratios of DOC to DON calculatedfrom fluxes from the forest floor were independent ofthe amount of annual precipitation, pointing to asimilar response of DOC and DON to precipitationconditions. A decrease in the ratio of DOC to DON withsoil depth as observed on a plot-scale, was notconfirmed by data analysis on a large scale. Thecontrols observed on annual fluxes and concentrationsof DON and DOC at regional scale differed from thosereported for smaller time and space scales.


Science of The Total Environment | 1998

Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter

Karsten Kalbitz; Rainer Wennrich

The wetland soils of the Mulde river in the industrial district of Bitterfeld-Wolfen (Germany) are highly contaminated with heavy metals and arsenic. We studied the mobility of accumulated heavy metals and arsenic and the influence of dissolved organic matter (DOM) on element mobility. Undisturbed soil cores were taken from five different sites to represent a wide range of heavy-metal contamination, soil properties and dissolved organic carbon (DOC) concentrations. The acid-soluble concentrations (mostly equal to the total content) were up to 1100 mg kg-1 for Zn, 800 mg kg-1 for Cr, 364 mg kg-1 for Cu, 265 mg kg-1 for As and 37 mg kg-1 for Hg, depending on the sampling site. Percolation experiments using small lysimeters with undisturbed topsoil cores illustrated a considerable mobilization of Zn, Cd, Cu, Cr and Hg, depending on soil properties. Up to 80 micrograms l-1 Cd, 8 mg 1-1 Zn, 130 micrograms l-1 Cr, 160 micrograms l-1 Cu and 7 micrograms l-1 Hg were detected in the soil percolates. Arsenic mobilization was low. The concentration of Cr, Hg, Cu and As in the soil percolates was positively correlated with DOM. Besides the element content (mobile or acid-soluble), soil pH and soil characteristics describing the soil potential for heavy-metal adsorption (clay, oxides, cation exchange capacity), the DOC concentration in the soil solution should be known to access the potential mobilization of Hg, Cr, Cu and As. In contrast, Cd and Zn mobilization depends on soil pH and mobile element content, but not on DOM. Additional studies on two soil profiles (down to 1.5 m) confirmed the translocation of heavy metals from the highly contaminated topsoil into deeper soil horizons and into the groundwater and the influence of DOM as revealed with the percolation experiment. Our results also showed that DOM is of minor importance on the mobilization of heavy metals in soils with a low soil pH (< 4.5).


Soil Biology & Biochemistry | 2003

Changes in properties of soil-derived dissolved organic matter induced by biodegradation

Karsten Kalbitz; David Schwesig; Juliane Schmerwitz; Klaus Kaiser; Ludwig Haumaier; Bruno Glaser; Ruth H. Ellerbrock; Peter Leinweber

Properties of dissolved organic matter (DOM) determine its biodegradation. In turn, biodegradation changes the properties of the remaining DOM, which may be decisive for the formation of stable organic carbon in soil. To gain information on both mechanisms and controlling factors of DOM biodegradation and the properties of biodegraded DOM, we investigated changes in the composition of 13 different DOM samples extracted from maize straw, forest floors, peats, and agricultural soils during a 90-day incubation using UV absorbance, fluorescence emission spectroscopy, FTIR-spectroscopy, 1 H-NMR spectroscopy, pyrolysis-field ionization mass spectroscopy (Py-FIMS), and 13 C natural abundance before and after incubation. Changes in the DOM properties were related to the extent of biodegradation determined by the release of CO2. Increasing UV absorption and humification indices deduced from fluorescence emission spectra, and increasing portions of aromatic H indicated relative enrichment of aromatic compounds during biodegradation. This enrichment significantly correlated with the amount of DOC mineralized suggesting that aromatic compounds were relatively stable and slowly mineralized. 13 C depletion during the incubation of highly degradable DOM solutions indicated an enrichment of lignin-derived aromatic compounds. Py-FI mass spectra indicated increasing contents of phenols and lignin monomers at the expense of lignin dimers and alkylaromatics during incubation. This partial degradation of higher-molecular, lignin-derived DOM compounds was accompanied by relative increases in the proportions of lower-molecular degradation products and microbial metabolites. Carbohydrates, especially when abundant at high initial contents, seem to be the preferred substrate for microorganisms. However, four independent methods suggested also some microbial production of carbohydrates and peptides during DOM degradation. After incubation, the composition of highly degradable DOM samples became similar to relatively stable DOM samples with respect to aromaticity, carbohydrate content, and thermal stability. We conclude that DOM biodegradation seems to result in organic matter properties being a precondition for the formation of stable carbon. These structural changes induced by DOM biodegradation should also result in stronger DOM sorption to the soil matrix additionally affecting DOM stabilization. q 2003 Elsevier Science Ltd. All rights reserved.


Biogeochemistry | 1999

Spectroscopic properties of dissolved humic substances - a reflection of land use history in a fen area

Karsten Kalbitz; Wolfgang Geyer; Stefan Geyer

The elemental composition and spectroscopic properties of dissolved fulvic acids isolated from different sampling media (topsoil, ground and surface water) of a natural fen area (high portion of organic soils) were examined to reveal the effects of land use history. These effects need to be known if dissolved humic substances are to be a major factor in identifying the impact of present and future changes in land use. Dissolved fulvic acids (topsoil, groundwater) from highly degraded peatlands (due to a long-term agricultural use) exhibit lower C/N ratios, higher absorption in the UV spectra, and higher absorption at 1,620 cm−1 in the FTIR spectra compared with fulvic acids from relatively intact peatlands. These properties illustrate that long-term agricultural use with high inputs results in increased aromatic structures and a further humification of dissolved fulvic acids due to very strong peat decomposition compared with relatively intact peatlands. Synchronous fluorescence spectra also indicate the higher level of aromatic structures within fulvic acids isolated from sites with long-term agricultural use (high peat decomposition) compared with a land use history resulting in a lower peat decomposition. The different sources of fulvic acids in surface water (precipitation, runoff, interflow, groundwater) are the main reason for these effects not being detected in fulvic acids isolated from surface water. Short-term changes in land use characterized by a transition from crop farming to an unimproved grassland were found not to affect the spectroscopic properties of dissolved fulvic acids. A humification index deduced from the synchronous fluorescence spectra is proposed. We have strong evidence that dissolved humic substances indicate changes in the environmental conditions (both anthropogenic and natural) of wetlands with a high proportion of organic soils.


Biogeochemistry | 2001

Controls on the dynamics of dissolved organic carbon and nitrogen in a Central European deciduous forest

Stephan Solinger; Karsten Kalbitz; Egbert Matzner

Despite growing attention concerning therole of dissolved organic matter (DOM) inelement cycling of forest ecosystems, thecontrols of concentrations and fluxes of bothdissolved organic carbon (DOC) and nitrogen(DON) under field conditions in forest soilsremain only poorly understood. The goal ofthis project is to measure the concentrations and fluxes of DON, NH4+, NO3−and DOC in bulkprecipitation, throughfall, forest floorleachates and soil solutions of a deciduousstand in the Steigerwald region (northernBavaria, Germany). The DOC and DONconcentrations and fluxes were highest inleachates originating from the Oa layer of theforest floor (73 mg C L−1, 2.3 mg NL−1 and about 200–350 kg C, 8–10 kg Nha−1 yr−1). They were observed to behighly variable over time and decreased in themineral topsoil (17 mg C L−1, 0.6 mg NL−1 and about 50–90 kg C, 2.0 to 2.4 kg Nha−1 yr−1). The annual variability ofDOC and DON concentrations and subsequentialDOC/DON ratios was substantial in allsolutions. The DOC and DON concentrations inthroughfall were positively correlated withtemperature. The DOC and DON concentrationsdid not show seasonality in the forest floorand mineral soil. Concentrations were notrelated to litterfall dynamics but didcorrespond in part to the input of DOC and DONfrom throughfall. The throughfall contributionto the overall element fluxes was higher forDON than for DOC. Concentrations and fluxes ofDON were significantly correlated to DOC inthroughfall and the Oi layer. However, thecorrelation was weak in Oa leachates. Inaddition, seasonal and annual variation ofDOC/DON ratios indicated different mechanismsand release rates from the forest floor forboth components. The concentrations of DOC andDON in forest floor leachates were in mostcases dependent neither on the pH value orionic strength of the solution, nor on thewater flux or temperature changes. As aconsequence, the DOC and DON fluxes from theforest floor into the mineral soil werelargely dependent on the water flux if annualand biweekly time scales are considered.


Ecology | 2011

A new conceptual model for the fate of lignin in decomposing plant litter

Thimo Klotzbücher; Klaus Kaiser; Georg Guggenberger; Christiane Gatzek; Karsten Kalbitz

Lignin is a main component of plant litter. Its degradation is thought to be critical for litter decomposition rates and the build-up of soil organic matter. We studied the relationships between lignin degradation and the production of dissolved organic carbon (DOC) and of CO2 during litter decomposition. Needle or leaf litter of five species (Norway spruce, Scots pine, mountain ash, European beech, sycamore maple) and of different decomposition stage (freshly fallen and up to 27 months of field exposure) was incubated in the laboratory for two years. Lignin degradation was followed with the CuO method. Strong lignin degradation occurred during the first 200 incubation days, as revealed by decreasing yields of lignin-derived phenols. Thereafter lignin degradation leveled off. This pattern was similar for fresh and decomposed litter, and it stands in contrast to the common view of limited lignin degradation in fresh litter. Dissolved organic carbon and CO2 also peaked in the first period of the incubation but were not interrelated. In the later phase of incubation, CO2 production was positively correlated with DOC amounts, suggesting that bioavailable, soluble compounds became a limiting factor for CO2 production. Lignin degradation occurred only when CO2 production was high, and not limited by bioavailable carbon. Thus carbon availability was the most important control on lignin degradation. In turn, lignin degradation could not explain differences in DOC and CO2 production over the study period. Our results challenge the traditional view regarding the fate and role of lignin during litter decomposition. Lignin degradation is controlled by the availability of easily decomposable carbon sources. Consequently, it occurs particularly in the initial phase of litter decomposition and is hampered at later stages if easily decomposable resources decline.


Chemosphere | 2000

A comparative characterization of dissolved organic matter by means of original aqueous samples and isolated humic substances

Karsten Kalbitz; Stefan Geyer; Wolfgang Geyer

The aim of our study is to test the use of less time-consuming spectroscopic methods applied on original water samples in order to obtain information about DOM composition without any sample preparation. These results were directly compared with results from a conventional isolation and characterization procedure of dissolved humic substances (fulvic acids--FA) isolated from the same water sample. FAs were characterized by UV-, fluorescence-, FTIR spectroscopy and elemental composition. UV absorbance and fluorescence behavior of FAs and original water samples follow the same pattern. A lower UV absorbance and a lower humification index (derived from the synchronous fluorescence spectra) of about 15% is typical for water samples compared to the FAs. We computed linear relationships between properties of the original water sample (UV-, synchronous fluorescence spectra) and the isolated FA (IR absorption, C/N ratio). The application of synchronous fluorescence and UV spectroscopy of aqueous samples has been proved to result in similar information about DOM composition as the characterization of isolated humic substances concerning the content of aromatic structures and the degree of humification.


Chemosphere | 2011

Salinity increases mobility of heavy metals in soils

J.A. Acosta; Boris Jansen; Karsten Kalbitz; A. Faz; Silvia Martínez-Martínez

The effect of salinity induced by CaCl(2), MgCl(2), NaCl and Na(2)SO(4) on the mobility of Cu, Cd, Pb and Zn was studied. An increase of ionic strength by any salts promoted a higher release of Cd than the others metals. When CaCl(2) and NaCl were applied, Cd and Pb showed the highest degree of mobilization. When MgCl(2) was applied, Cd and Cu were mobilized the most. Finally, an increase of Na(2)SO(4) also promoted the strongest mobilization of Cd and Cu. As the total heavy metal content was higher, the percentage of Pb and Cu released upon salinization decreased, indicating that these metals are strongly bound to soil constituents. An increase of carbonates in the soil promoted a higher release of Pb for all used salts and for Zn when MgCl(2) and NaCl were used. This indicates that Pb and Zn are adsorbed on the surface of carbonate crystals. An increase of fine particles promoted a decrease of percentage of released Cd for all salts, indicating that Cd is strongly retained in the fine fractions. The main mechanism regulating Pb and Cd mobility was competition with Ca(2+) for sorption sites followed for metal chloro-complexation, association between the Cd/Pb-sulfates and competition with Mg(2+). The main mechanism regulating Cu mobility was the formation of Cu-sulfate, followed by competition with cations (Mg > Ca) and chloride. For Zn, competition with Ca(2+) for sorption sites was the most important process for its mobility; followed by Zn-sulfate association and, finally, chloride and competition with Mg with the same effect.

Collaboration


Dive into the Karsten Kalbitz's collaboration.

Top Co-Authors

Avatar

Boris Jansen

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

C. Cerli

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Faz

University of Cartagena

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.R. Parsons

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

R. Helmus

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Holger Rupp

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Researchain Logo
Decentralizing Knowledge