Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karsten Melcher is active.

Publication


Featured researches published by Karsten Melcher.


Nature | 2009

A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors

Karsten Melcher; Ley-Moy Ng; X. Edward Zhou; Fen-Fen Soon; Yong Xu; Kelly Suino-Powell; Sang-Youl Park; Joshua J. Weiner; Hiroaki Fujii; Viswanathan Chinnusamy; Amanda Kovach; Jun Li; Yonghong Wang; Jiayang Li; Francis C. Peterson; Davin R. Jensen; Eu Leong Yong; Brian F. Volkman; Sean R. Cutler; Jian-Kang Zhu; H. Eric Xu

Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2–ABA–PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate–latch–lock mechanism underlying ABA signalling.


Nature | 2015

Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

Yanyong Kang; X. Edward Zhou; Xiang Gao; Yuanzheng He; Wei Liu; Andrii Ishchenko; Anton Barty; Thomas A. White; Oleksandr Yefanov; Gye Won Han; Qingping Xu; Parker W. de Waal; Jiyuan Ke; M. H.Eileen Tan; Chenghai Zhang; Arne Moeller; Graham M. West; Bruce D. Pascal; Ned Van Eps; Lydia N. Caro; Sergey A. Vishnivetskiy; Regina J. Lee; Kelly Suino-Powell; Xin Gu; Kuntal Pal; Jinming Ma; Xiaoyong Zhi; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin–arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Science | 2013

Structural Basis for Molecular Recognition at Serotonin Receptors

Chong Wang; Yi Jiang; Jinming Ma; Huixian Wu; Daniel Wacker; Vsevolod Katritch; Gye Won Han; Wei Liu; Xi Ping Huang; Eyal Vardy; John D. McCorvy; Xiang Gao; X. Edward Zhou; Karsten Melcher; Chenghai Zhang; Fang Bai; Huaiyu Yang; Linlin Yang; Hualiang Jiang; Bryan L. Roth; Vadim Cherezov; Raymond C. Stevens; H. Eric Xu

Dissecting Serotonin Receptors Serotonin receptors are the targets for many widely used drugs prescribed to treat ailments from depression to obesity and migraine headaches (see the Perspective by Palczewski and Kiser). C. Wang et al. (p. 610, published online 21 March) and Wacker et al. (p. 615, published online 21 March) describe crystal structures of two members of the serotonin family of receptors bound to antimigraine medications or to a precursor of the hallucinogenic drug LSD. Subtle differences in the way particular ligands bind to the receptors cause substantial differences in the signals generated by the receptor and the consequent biological responses. The structures reveal how the same ligand can activate one or both of the two main serotonin receptor signaling mechanisms, depending on which particular receptor it binds. Structures of serotonin receptor family members in complex with the fungal alkaloid ergot offer clues for drug designers. [Also see Perspective by Palczewski and Kiser] Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein–coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.


Nature | 2013

DWARF 53 acts as a repressor of strigolactone signalling in rice

Liang Jiang; Xue Liu; Guosheng Xiong; Huihui Liu; Fulu Chen; Lei Wang; Xiangbing Meng; Guifu Liu; Hong Yu; Yundong Yuan; Wei Yi; Li-Hua Zhao; Honglei Ma; Yuanzheng He; Zhongshan Wu; Karsten Melcher; Qian Qian; H. Eric Xu; Yonghong Wang; Jiayang Li

Strigolactones (SLs) are a group of newly identified plant hormones that control plant shoot branching. SL signalling requires the hormone-dependent interaction of DWARF 14 (D14), a probable candidate SL receptor, with DWARF 3 (D3), an F-box component of the Skp–Cullin–F-box (SCF) E3 ubiquitin ligase complex. Here we report the characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCFD3 ubiquitination complex and functions as a repressor of SL signalling. Treatments with GR24, a synthetic SL analogue, cause D53 degradation via the proteasome in a manner that requires D14 and the SCFD3 ubiquitin ligase, whereas the dominant form of D53 is resistant to SL-mediated degradation. Moreover, D53 can interact with transcriptional co-repressors known as TOPLESS-RELATED PROTEINS. Our results suggest a model of SL signalling that involves SL-dependent degradation of the D53 repressor mediated by the D14–D3 complex.


Nature | 2013

Structural basis for molecular recognition of folic acid by folate receptors

Chen Chen; Jiyuan Ke; X. Edward Zhou; Wei Yi; Joseph S. Brunzelle; Jun Li; Eu Leong Yong; H. Eric Xu; Karsten Melcher

Folate receptors (FRα, FRβ and FRγ) are cysteine-rich cell-surface glycoproteins that bind folate with high affinity to mediate cellular uptake of folate. Although expressed at very low levels in most tissues, folate receptors, especially FRα, are expressed at high levels in numerous cancers to meet the folate demand of rapidly dividing cells under low folate conditions. The folate dependency of many tumours has been therapeutically and diagnostically exploited by administration of anti-FRα antibodies, high-affinity antifolates, folate-based imaging agents and folate-conjugated drugs and toxins. To understand how folate binds its receptors, we determined the crystal structure of human FRα in complex with folic acid at 2.8 Å resolution. FRα has a globular structure stabilized by eight disulphide bonds and contains a deep open folate-binding pocket comprised of residues that are conserved in all receptor subtypes. The folate pteroate moiety is buried inside the receptor, whereas its glutamate moiety is solvent-exposed and sticks out of the pocket entrance, allowing it to be conjugated to drugs without adversely affecting FRα binding. The extensive interactions between the receptor and ligand readily explain the high folate-binding affinity of folate receptors and provide a template for designing more specific drugs targeting the folate receptor system.


Science | 2012

Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

Fen Fen Soon; Ley Moy Ng; X. Edward Zhou; Graham M. West; Amanda Kovach; M. H.Eileen Tan; Kelly Suino-Powell; Yuanzheng He; Yong Xu; Michael J. Chalmers; Joseph S. Brunzelle; Huiming Zhang; Huaiyu Yang; Hualiang Jiang; Jun Li; Eu Leong Yong; Sean R. Cutler; Jian-Kang Zhu; Patrick R. Griffin; Karsten Melcher; H. Eric Xu

Musical Chairs The plant hormone abscisic acid (ABA) helps plants to respond to changes in the environment, such as drought. Physiological responses are initiated when ABA binds to its receptor. In the absence of ABA, downstream kinases are held inactive by phosphatases. Soon et al. (p. 85, published online 24 November; see the Perspective by Leung) now show that both the hormone-receptor complex and the downstream kinase bind to the same site on the phosphatase. Thus, in the presence of hormone, the phosphatase is occupied and unable to interfere with downstream kinase activity. Two players and one chair regulate this plant hormone signaling cascade. Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.


Cell Research | 2013

Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14.

Li-Hua Zhao; X. Edward Zhou; Zhongshan Wu; Wei Yi; Yong Xu; Suling Li; Ting-Hai Xu; Yue Liu; Run-Ze Chen; Amanda Kovach; Yangyong Kang; Li Hou; Yuanzheng He; Cen Xie; Wanling Song; Dafang Zhong; Yechun Xu; Yonghong Wang; Jiayang Li; Chenghai Zhang; Karsten Melcher; H. Eric Xu

Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14


Acta Pharmacologica Sinica | 2015

Androgen receptor: structure, role in prostate cancer and drug discovery

M. H.Eileen Tan; Jun Li; H. Eric Xu; Karsten Melcher; Eu Leong Yong

Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2–3 years as the patients develop castration-resistant prostate cancer (CRPC). In CRPC, a functional AR remains a key regulator. Early studies focused on the functional domains of the AR and its crucial role in the pathology. The elucidation of the structures of the AR DNA binding domain (DBD) and ligand binding domain (LBD) provides a new framework for understanding the functions of this receptor and leads to the development of rational drug design for the treatment of prostate cancer. An overview of androgen receptor structure and activity, its actions in prostate cancer, and how structural information and high-throughput screening have been or can be used for drug discovery are provided herein.


Nature Structural & Molecular Biology | 2010

Identification and mechanism of ABA receptor antagonism

Karsten Melcher; Yong Xu; Ley-Moy Ng; X. Edward Zhou; Fen-Fen Soon; Viswanathan Chinnusamy; Kelly Suino-Powell; Amanda Kovach; Fook S. Tham; Sean R. Cutler; Jun Li; Eu Leong Yong; Jian-Kang Zhu; H. Eric Xu

The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2–pyrabactin and PYL1–pyrabactin–ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

Ley-Moy Ng; Fen-Fen Soon; X.E Zhou; Graham M. West; Amanda Kovach; Kelly Suino-Powell; Michael J. Chalmers; Jingwen Li; Eu Leong Yong; Jian-Kang Zhu; Patrick R. Griffin; Karsten Melcher; H.E. Xu

Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-Å resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.

Collaboration


Dive into the Karsten Melcher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Gu

Van Andel Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge