Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karsten Schrobback is active.

Publication


Featured researches published by Karsten Schrobback.


Acta Biomaterialia | 2014

A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate.

Peter A. Levett; Ferry P.W. Melchels; Karsten Schrobback; Dietmar W. Hutmacher; Jos Malda; Travis J. Klein

The development of hydrogels tailored for cartilage tissue engineering has been a research and clinical goal for over a decade. Directing cells towards a chondrogenic phenotype and promoting new matrix formation are significant challenges that must be overcome for the successful application of hydrogels in cartilage tissue therapies. Gelatin-methacrylamide (Gel-MA) hydrogels have shown promise for the repair of some tissues, but have not been extensively investigated for cartilage tissue engineering. We encapsulated human chondrocytes in Gel-MA-based hydrogels, and show that with the incorporation of small quantities of photocrosslinkable hyaluronic acid methacrylate (HA-MA), and to a lesser extent chondroitin sulfate methacrylate (CS-MA), chondrogenesis and mechanical properties can be enhanced. The addition of HA-MA to Gel-MA constructs resulted in more rounded cell morphologies, enhanced chondrogenesis as assessed by gene expression and immunofluorescence, and increased quantity and distribution of the newly synthesized extracellular matrix (ECM) throughout the construct. Consequently, while the compressive moduli of control Gel-MA constructs increased by 26 kPa after 8 weeks culture, constructs with HA-MA and CS-MA increased by 114 kPa. The enhanced chondrogenic differentiation, distribution of ECM, and improved mechanical properties make these materials potential candidates for cartilage tissue engineering applications.


Osteoarthritis and Cartilage | 2012

Dynamic compression improves biosynthesis of human zonal chondrocytes from osteoarthritis patients

J.E. Jeon; Karsten Schrobback; Dietmar W. Hutmacher; Travis J. Klein

OBJECTIVE We hypothesize that chondrocytes from distinct zones of articular cartilage respond differently to compressive loading, and that zonal chondrocytes from osteoarthritis (OA) patients can benefit from optimized compressive stimulation. Therefore, we aimed to determine the transcriptional response of superficial (S) and middle/deep (MD) zone chondrocytes to varying dynamic compressive strain and loading duration. To confirm effects of compressive stimulation on overall matrix production, we subjected zonal chondrocytes to compression for 2 weeks. DESIGN Human S and MD chondrocytes from osteoarthritic joints were encapsulated in 2% alginate, pre-cultured, and subjected to compression with varying dynamic strain (5, 15, 50% at 1 Hz) and loading duration (1, 3, 12 h). Temporal changes in cartilage-specific, zonal, and dedifferentiation genes following compression were evaluated using quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). The benefits of long-term compression (50% strain, 3 h/day, for 2 weeks) were assessed by measuring construct glycosaminoglycan (GAG) content and compressive moduli, as well as immunostaining. RESULTS Compressive stimulation significantly induced aggrecan (ACAN), COL2A1, COL1A1, proteoglycan 4 (PRG4), and COL10A1 gene expression after 2 h of unloading, in a zone-dependent manner (P < 0.05). ACAN and PRG4 mRNA levels depended on strain and load duration, with 50% and 3 h loading resulting in highest levels (P < 0.05). Long-term compression increased collagen type II and ACAN immunostaining and total GAG (P < 0.05), but only S constructs showed more PRG4 stain, retained more GAG (P < 0.01), and developed higher compressive moduli than non-loaded controls. CONCLUSIONS The biosynthetic activity of zonal chondrocytes from osteoarthritis joints can be enhanced with selected compression regimes, indicating the potential for cartilage tissue engineering applications.


Soft Matter | 2010

Long-term effects of hydrogel properties on human chondrocyte behavior

Travis J. Klein; Simone C. Rizzi; Karsten Schrobback; Johannes C. Reichert; June E. Jeon; Ross Crawford; Dietmar W. Hutmacher

Hydrogels provide a 3-dimensional network for embedded cells and offer promise for cartilage tissue engineering applications. Nature-derived hydrogels, including alginate, have been shown to enhance the chondrocyte phenotype but are variable and not entirely controllable. Synthetic hydrogels, including polyethylene glycol (PEG)-based matrices, have the advantage of repeatability and modularity; mechanical stiffness, cell adhesion, and degradability can be altered independently. In this study, we compared the long-term in vitro effects of different hydrogels (alginate and Factor XIIIa-cross-linked MMP-sensitive PEG at two stiffness levels) on the behavior of expanded human chondrocytes and the development of construct properties. Monolayer-expanded human chondrocytes remained viable throughout culture, but morphology varied greatly in different hydrogels. Chondrocytes were characteristically round in alginate but mostly spread in PEG gels at both concentrations. Chondrogenic gene (COL2A1, aggrecan) expression increased in all hydrogels, but alginate constructs had much higher expression levels of these genes (up to 90-fold for COL2A1), as well as proteoglycan 4, a functional marker of the superficial zone. Also, chondrocytes expressed COL1A1 and COL10A1, indicative of de-differentiation and hypertrophy. After 12 weeks, constructs with lower polymer content were stiffer than similar constructs with higher polymer content, with the highest compressive modulus measured in 2.5% PEG gels. Different materials and polymer concentrations have markedly different potency to affect chondrocyte behavior. While synthetic hydrogels offer many advantages over natural materials such as alginate, they must be further optimized to elicit desired chondrocyte responses for use as cartilage models and for development of functional tissue-engineered articular cartilage.


Journal of Orthopaedic Research | 2011

Adult human articular chondrocytes in a microcarrier-based culture system: expansion and redifferentiation

Karsten Schrobback; Travis J. Klein; Michael Schuetz; Zee Upton; David I. Leavesley; Jos Malda

Expanding human chondrocytes in vitro while maintaining their ability to form cartilage remains a key challenge in cartilage tissue engineering. One promising approach to address this is to use microcarriers as substrates for chondrocyte expansion. While microcarriers have shown beneficial effects for expansion of animal and ectopic human chondrocytes, their utility has not been determined for freshly isolated adult human articular chondrocytes. Thus, we investigated the proliferation and subsequent chondrogenic differentiation of these clinically relevant cells on porous gelatin microcarriers and compared them to those expanded using traditional monolayers. Chondrocytes attached to microcarriers within 2 days and remained viable over 4 weeks of culture in spinner flasks. Cells on microcarriers exhibited a spread morphology and initially proliferated faster than cells in monolayer culture, however, with prolonged expansion they were less proliferative. Cells expanded for 1 month and enzymatically released from microcarriers formed cartilaginous tissue in micromass pellet cultures, which was similar to tissue formed by monolayer‐expanded cells. Cells left attached to microcarriers did not exhibit chondrogenic capacity. Culture conditions, such as microcarrier material, oxygen tension, and mechanical stimulation require further investigation to facilitate the efficient expansion of clinically relevant human articular chondrocytes that maintain chondrogenic potential for cartilage regeneration applications.


Cell and Tissue Research | 2012

Validation of a high-throughput microtissue fabrication process for 3D assembly of tissue engineered cartilage constructs

Ben Schon; Karsten Schrobback; M.C. van der Ven; Simon Stroebel; Gary J. Hooper; Tim B. F. Woodfield

Described here is a simple, high-throughput process to fabricate pellets with regular size and shape and the assembly of pre-cultured pellets in a controlled manner into specifically designed 3D plotted porous scaffolds. Culture of cartilage pellets is a well-established process for inducing re-differentiation in expanded chondrocytes. Commonly adopted pellet culture methods using conical tubes are inconvenient, time-consuming and space-intensive. We compared the conventional 15-mL tube pellet culture method with 96-well plate-based methods, examining two different well geometries (round- and v-bottom plates). The high-throughput production method was then used to demonstrate guided placement of pellets within a scaffold of defined pore size and geometry for the 3D assembly of tissue engineered cartilage constructs. While minor differences were observed in tissue quality and size, the chondrogenic re-differentiation capacity of human chondrocytes, as assessed by GAG/DNA, collagen type I and II immunohistochemistry and collagen type I, II and aggrecan mRNA expression, was maintained in the 96-well plate format and pellets of regular size and spheroidal shape were produced. This allowed for simple production of large numbers of reproducible tissue spheroids. Furthermore, the pellet-assembly method successfully allowed fluorescently labelled pellets to be individually visualised in 3D. During subsequent culture of 3D assembled tissue engineered constructs in vitro, pellets fused to form a coherent tissue, promoting chondrogenic differentiation and GAG accumulation.


Arthritis & Rheumatism | 2013

Effect of preculture and loading on expression of matrix molecules, matrix metalloproteinases, and cytokines by expanded osteoarthritic chondrocytes.

June E. Jeon; Karsten Schrobback; Christoph Meinert; Viviana Sramek; Dietmar W. Hutmacher; Travis J. Klein

OBJECTIVE One of the pathologic changes that occurs during osteoarthritis (OA) is the degeneration of the pericellular matrix (PCM). Since the PCM is likely to be involved in mechanotransduction, this study was undertaken to investigate the effects of PCM-like matrix accumulation in zonal OA chondrocytes and their influence on chondrocyte response to compression. METHODS Superficial and middle/deep zone chondrocytes from macroscopically normal cartilage of OA knees were expanded and encapsulated in alginate gels. The effects of compression (short-term or long-term) and preculture on chondrocyte expression of various matrix molecules, cytokines, and matrix metalloproteinases (MMPs) were assessed. Additionally, nonexpanded chondrocytes were encapsulated in alginate and cultured in the presence or absence of transforming growth factor β1 (TGFβ1) and dexamethasone and analyzed following short-term compression experiments. RESULTS Expanded OA chondrocytes (superficial and middle/deep zone) that were precultured for 2 weeks under free-swelling conditions prior to dynamic compression responded more sensitively to loading and had increased matrix accumulation, increased interleukin-1β (IL-1β) and IL-4 levels, and decreased levels of MMP-2 (in the middle/deep zone) compared to the nonloaded controls. Compression also decreased MMP-3 and MMP-13 levels even without preculture. Nonexpanded chondrocytes did not respond to compression, but differences in gene expression were found depending on the zone of harvest, time in culture, and medium composition. CONCLUSION Our findings demonstrate that with predeposited PCM-like matrix, compressive stimulation can enhance matrix protein accumulation in expanded OA chondrocytes. Investigations into how PCM or other matrix components differentially affect this balance under mechanical loading may provide invaluable insight into OA pathogenesis and the use of expanded cells in tissue engineering and regenerative medicine-based applications.


Acta Biomaterialia | 2015

Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems.

Michal Bartnikowski; Nicole Bartnikowski; Maria A. Woodruff; Karsten Schrobback; Travis J. Klein

UNLABELLED Photocrosslinkable hydrogels are frequently used in cartilage tissue engineering, with crosslinking systems relying on cytotoxic photoinitiators and ultraviolet (UV) light to form permanent hydrogels. These systems are rarely assessed in terms of optimization of photoinitiator or UV dosage, with non-cytotoxic concentrations from literature deemed sufficient. We hypothesized that the number of reactive functional groups present within a hydrogel polymer is highly relevant when crosslinking, affording cytoprotection to chondrocytes by preferentially interacting with the highly reactive radicals that are formed during UV-mediated activation of a photoinitiator. This was tested using two photocrosslinkable hydrogel systems: gelatin methacrylamide (GelMA) and gellan gum methacrylate (GGMA). We further assessed the effects of two different UV dosages on chondrocyte differentiation while subject to a single photoinitiator dosage in the GGMA system. Most notably, we found that a higher ratio of reactive groups to photoinitiator molecules offers cytoprotective effects, and future developments in photocrosslinkable hydrogel technology may involve assessment of such ratios. In contrast, we found there to be no effect of UV on chondrocyte differentiation at the two chosen dosages. Overall the optimization of photocrosslinkable systems is of great value in cartilage tissue engineering and these data provide a groundwork for such concepts to be developed further. STATEMENT OF SIGNIFICANCE Photocrosslinkable hydrogels, which use photoinitiators and predominantly ultraviolet light to form stable matrices for cell encapsulation and tissue development, are promising for cartilage tissue engineering. While both photoinitiators and ultraviolet light can damage cells, these systems have generally not been optimized. We propose that the ratio of reactive functional groups within a polymer to photoinitiator molecules is a critical parameter for optimization of photocrosslinkable hydrogels. Using photocrosslinkable gelatin and gellan gum, we found that a higher ratio of reactive groups to photoinitiator molecules protected chondrocytes, but did not affect chondrocyte differentiation. The principle of cytoprotection by functional groups developed in this work will be of great value in optimizing photocrosslinkable hydrogel systems for cartilage and other tissue engineering applications.


Biomaterials | 2017

Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives

Kan Yue; Xiuyu Li; Karsten Schrobback; Amir Sheikhi; Nasim Annabi; Jeroen Leijten; Weijia Zhang; Yu Shrike Zhang; Dietmar W. Hutmacher; Travis J. Klein; Ali Khademhosseini

Biochemically modified proteins have attracted significant attention due to their widespread applications as biomaterials. For instance, chemically modified gelatin derivatives have been widely explored to develop hydrogels for tissue engineering and regenerative medicine applications. Among the reported methods, modification of gelatin with methacrylic anhydride (MA) stands out as a convenient and efficient strategy to introduce functional groups and form hydrogels via photopolymerization. Combining light-activation of modified gelatin with soft lithography has enabled the materialization of microfabricated hydrogels. So far, this gelatin derivative has been referred to in the literature as gelatin methacrylate, gelatin methacrylamide, or gelatin methacryloyl, with the same abbreviation of GelMA. Considering the complex composition of gelatin and the presence of different functional groups on the amino acid residues, both hydroxyl groups and amine groups can possibly react with methacrylic anhydride during functionalization of the protein. This can also apply to the modification of other proteins, such as recombinant human tropoelastin to form MA-modified tropoelastin (MeTro). Here, we employed analytical methods to quantitatively determine the amounts of methacrylate and methacrylamide groups in MA-modified gelatin and tropoelastin to better understand the reaction mechanism. By combining two chemical assays with instrumental techniques, such as proton nuclear magnetic resonance (1H NMR) and liquid chromatography tandem-mass spectrometry (LC-MS/MS), our results indicated that while amine groups had higher reactivity than hydroxyl groups and resulted in a majority of methacrylamide groups, modification of proteins by MA could lead to the formation of both methacrylamide and methacrylate groups. It is therefore suggested that the standard terms for GelMA and MeTro should be defined as gelatin methacryloyl and methacryloyl-substituted tropoelastin, respectively, to remain consistent with the widespread abbreviations used in literature.


Scientific Reports | 2017

A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineered human cartilage

Christoph Meinert; Karsten Schrobback; Dietmar W. Hutmacher; Travis J. Klein

The ex vivo engineering of autologous cartilage tissues has the potential to revolutionize the clinical management of joint disorders. Yet, high manufacturing costs and variable outcomes associated with tissue-engineered implants are still limiting their application. To improve clinical outcomes and facilitate a wider use of engineered tissues, automated bioreactor systems capable of enhancing and monitoring neotissues are required. Here, we developed an innovative system capable of applying precise uni- or biaxial mechanical stimulation to developing cartilage neotissues in a tightly controlled and automated fashion. The bioreactor allows for simple control over the loading parameters with a user-friendly graphical interface and is equipped with a load cell for monitoring tissue maturation. Applying our bioreactor, we demonstrate that human articular chondrocytes encapsulated in hydrogels composed of gelatin methacryloyl (GelMA) and hyaluronic acid methacrylate (HAMA) respond to uni- and biaxial mechanical stimulation by upregulation of hyaline cartilage-specific marker genes. We further demonstrate that intermittent biaxial mechanostimulation enhances accumulation of hyaline cartilage-specific extracellular matrix. Our study underlines the stimulatory effects of mechanical loading on the biosynthetic activity of human chondrocytes in engineered constructs and the need for easy-to-use, automated bioreactor systems in cartilage tissue engineering.


Acta Biomaterialia | 2017

Tailoring hydrogel surface properties to modulate cellular response to shear loading.

Christoph Meinert; Karsten Schrobback; Peter A. Levett; Cameron Lutton; Robert L. Sah; Travis J. Klein

Biological tissues at articulating surfaces, such as articular cartilage, typically have remarkable low-friction properties that limit tissue shear during movement. However, these frictional properties change with trauma, aging, and disease, resulting in an altered mechanical state within the tissues. Yet, it remains unclear how these surface changes affect the behaviour of embedded cells when the tissue is mechanically loaded. Here, we developed a cytocompatible, bilayered hydrogel system that permits control of surface frictional properties without affecting other bulk physicochemical characteristics such as compressive modulus, mass swelling ratio, and water content. This hydrogel system was applied to investigate the effect of variations in surface friction on the biological response of human articular chondrocytes to shear loading. Shear strain in these hydrogels during dynamic shear loading was significantly higher in high-friction hydrogels than in low-friction hydrogels. Chondrogenesis was promoted following dynamic shear stimulation in chondrocyte-encapsulated low-friction hydrogel constructs, whereas matrix synthesis was impaired in high-friction constructs, which instead exhibited increased catabolism. Our findings demonstrate that the surface friction of tissue-engineered cartilage may act as a potent regulator of cellular homeostasis by governing the magnitude of shear deformation during mechanical loading, suggesting a similar relationship may also exist for native articular cartilage. STATEMENT OF SIGNIFICANCE Excessive mechanical loading is believed to be a major risk factor inducing pathogenesis of articular cartilage and other load-bearing tissues. Yet, the mechanisms leading to increased transmission of mechanical stimuli to cells embedded in the tissue remain largely unexplored. Here, we demonstrate that the tribological properties of loadbearing tissues regulate cellular behaviour by governing the magnitude of mechanical deformation arising from physiological tissue function. Based on these findings, we propose that changes to articular surface friction as they occur with trauma, aging, or disease, may initiate tissue pathology by increasing the magnitude of mechanical stress on embedded cells beyond a physiological level.

Collaboration


Dive into the Karsten Schrobback's collaboration.

Top Co-Authors

Avatar

Travis J. Klein

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Dietmar W. Hutmacher

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David I. Leavesley

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zee Upton

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter A. Levett

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ross Crawford

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christoph Meinert

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge