Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karsten Zengler is active.

Publication


Featured researches published by Karsten Zengler.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Cultivating the uncultured

Karsten Zengler; Gerardo Vicente Toledo; Michael S. Rappé; James G. Elkins; Eric J. Mathur; Jay M. Short; Martin Keller

The recent application of molecular phylogeny to environmental samples has resulted in the discovery of an abundance of unique and previously unrecognized microorganisms. The vast majority of this microbial diversity has proved refractory to cultivation. Here, we describe a universal method that provides access to this immense reservoir of untapped microbial diversity. This technique combines encapsulation of cells in gel microdroplets for massively parallel microbial cultivation under low nutrient flux conditions, followed by flow cytometry to detect microdroplets containing microcolonies. The ability to grow and study previously uncultured organisms in pure culture will enhance our understanding of microbial physiology and metabolic adaptation and will provide new sources of microbial metabolites. We show that this technology can be applied to samples from several different environments, including seawater and soil.


Nature | 1999

Methane formation from long-chain alkanes by anaerobic microorganisms

Karsten Zengler; Hans H. Richnow; Ramon Rosselló-Móra; Walter Michaelis; Friedrich Widdel

Biological formation of methane is the terminal process of biomass degradation in aquatic habitats where oxygen, nitrate, ferric iron and sulphate have been depleted as electron acceptors. The pathway leading from dead biomass to methane through the metabolism of anaerobic bacteria and archaea is well understood for easily degradable biomolecules such as carbohydrates, proteins and lipids. However, little is known about the organic compounds that lead to methane in old anoxic sediments where easily degradable biomolecules are no longer available. One class of naturally formed long-lived compounds in such sediments is the saturated hydrocarbons (alkanes). Alkanes are usually considered to be inert in the absence of oxygen, nitrate or sulphate, and the analysis of alkane patterns is often used for biogeochemical characterization of sediments. However, alkanes might be consumed in anoxic sediments below the zone of sulphate reduction, but the underlying process has not been elucidated. Here we used enrichment cultures to show that the biological conversion of long-chain alkanes to the simplest hydrocarbon, methane, is possible under strictly anoxic conditions.


Energy and Environmental Science | 2014

A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane

Amelia-Elena Rotaru; Pravin Malla Shrestha; Fanghua Liu; Minita Shrestha; Devesh Shrestha; Mallory Embree; Karsten Zengler; Colin Wardman; Kelly P. Nevin; Derek R. Lovley

Anaerobic conversion of organic wastes and biomass to methane is an important bioenergy strategy, which depends on poorly understood mechanisms of interspecies electron transfer to methanogenic microorganisms. Metatranscriptomic analysis of methanogenic aggregates from a brewery wastewater digester, coupled with fluorescence in situ hybridization with specific 16S rRNA probes, revealed that Methanosaeta species were the most abundant and metabolically active methanogens. Methanogens known to reduce carbon dioxide with H2 or formate as the electron donor were rare. Although Methanosaeta have previously been thought to be restricted to acetate as a substrate for methane production, Methanosaeta in the aggregates had a complete complement of genes for the enzymes necessary for the reduction of carbon to methane, and transcript abundance for these genes was high. Furthermore, Geobacter species, the most abundant bacteria in the aggregates, highly expressed genes for ethanol metabolism and for extracellular electron transfer via electrically conductive pili, suggesting that Geobacter and Methanosaeta species were exchanging electrons via direct interspecies electron transfer (DIET). This possibility was further investigated in defined co-cultures of Geobacter metallireducens and Methanosaeta harundinacea which stoichiometrically converted ethanol to methane. Transcriptomic, radiotracer, and genetic analysis demonstrated that M. harundinacea accepted electrons via DIET for the reduction of carbon dioxide to methane. The discovery that Methanosaeta species, which are abundant in a wide diversity of methanogenic environments, are capable of DIET has important implications not only for the functioning of anaerobic digesters, but also for global methane production.


Nature Biotechnology | 2009

The transcription unit architecture of the Escherichia coli genome

Byung-Kwan Cho; Karsten Zengler; Yu Qiu; Young Seoub Park; Eric M. Knight; Christian L. Barrett; Yuan Gao; Bernhard O. Palsson

Bacterial genomes are organized by structural and functional elements, including promoters, transcription start and termination sites, open reading frames, regulatory noncoding regions, untranslated regions and transcription units. Here, we iteratively integrate high-throughput, genome-wide measurements of RNA polymerase binding locations and mRNA transcript abundance, 5′ sequences and translation into proteins to determine the organizational structure of the Escherichia coli K-12 MG1655 genome. Integration of the organizational elements provides an experimentally annotated transcription unit architecture, including alternative transcription start sites, 5′ untranslated region, boundaries and open reading frames of each transcription unit. A total of 4,661 transcription units were identified, representing an increase of >530% over current knowledge. This comprehensive transcription unit architecture allows for the elucidation of condition-specific uses of alternative sigma factors at the genome scale. Furthermore, the transcription unit architecture provides a foundation on which to construct genome-scale transcriptional and translational regulatory networks.


Applied and Environmental Microbiology | 2007

Targeted Access to the Genomes of Low-Abundance Organisms in Complex Microbial Communities

Mircea Podar; Carl B. Abulencia; Marion Walcher; Don Hutchison; Karsten Zengler; Joseph Garcia; Trevin Holland; David Cotton; Loren Hauser; Martin S. Keller

ABSTRACT Current metagenomic approaches to the study of complex microbial consortia provide a glimpse into the community metabolism and occasionally allow genomic assemblies for the most abundant organisms. However, little information is gained for the members of the community present at low frequencies, especially those representing yet-uncultured taxa, which include the bulk of the diversity present in most environments. Here we used phylogenetically directed cell separation by fluorescence in situ hybridization and flow cytometry, followed by amplification and sequencing of a fraction of the genomic DNA of several bacterial cells that belong to the TM7 phylum. Partial genomic assembly allowed, for the first time, a look into the evolution and potential metabolism of a soil representative from this group of organisms for which there are no species in stable laboratory cultures. Genomic reconstruction from targeted cells of uncultured organisms isolated directly from the environment represents a powerful approach to access any specific members of a community and an alternative way to assess the communitys metabolic potential.


Nature Communications | 2013

The microbiome extends to subepidermal compartments of normal skin

Teruaki Nakatsuji; Hsin-I Chiang; Shangi B. Jiang; Harish Nagarajan; Karsten Zengler; Richard L. Gallo

Commensal microbes on the skin surface influence the behavior of cells below the epidermis. We hypothesized that bacteria or their products exist below the surface epithelium and thus permit physical interaction between microbes and dermal cells. Here, to test this hypothesis, we employed multiple independent detection techniques for bacteria including qPCR, Gram-staining, immunofluorescence, and in situ hybridization. Bacteria were consistently detectable within the dermis and dermal adipose of normal human skin. Sequencing of DNA from dermis and dermal adipose tissue identified bacterial 16S rRNA reflective of a diverse and partially distinct microbial community in each skin compartment. These results show the microbiota extends within the dermis, therefore enabling physical contact between bacteria and various cells below the basement membrane. These observations show that normal commensal bacterial communities directly communicate with the host in a tissue previously thought to be sterile.


Nature Communications | 2012

In silico method for modelling metabolism and gene product expression at genome scale

Joshua A. Lerman; Daniel R. Hyduke; Haythem Latif; Vasiliy A. Portnoy; Nathan E. Lewis; Jeffrey D. Orth; Alexandra C. Schrimpe-Rutledge; Richard D. Smith; Joshua N. Adkins; Karsten Zengler; Bernhard O. Palsson

Transcription and translation use raw materials and energy generated metabolically to create the macromolecular machinery responsible for all cellular functions, including metabolism. A biochemically accurate model of molecular biology and metabolism will facilitate comprehensive and quantitative computations of an organisms molecular constitution as a function of genetic and environmental parameters. Here we formulate a model of metabolism and macromolecular expression. Prototyping it using the simple microorganism Thermotoga maritima, we show our model accurately simulates variations in cellular composition and gene expression. Moreover, through in silico comparative transcriptomics, the model allows the discovery of new regulons and improving the genome and transcription unit annotations. Our method presents a framework for investigating molecular biology and cellular physiology in silico and may allow quantitative interpretation of multi-omics data sets in the context of an integrated biochemical description of an organism.


Current Opinion in Biotechnology | 2011

Adaptive laboratory evolution — harnessing the power of biology for metabolic engineering

Vasiliy A. Portnoy; Daniela Bezdan; Karsten Zengler

Adaptive laboratory evolution (ALE) strategies allow for the metabolic engineering of microorganisms by combining genetic variation with the selection of beneficial mutations in an unbiased fashion. These ALE strategies have been proven highly effective in the optimization of production strains. In contrast to rational engineering strategies and directed modification of specific enzymes, ALE has the advantage of letting nonintuitive beneficial mutations occur in many different genes and regulatory regions in parallel. So far, the majority of applications of ALE in metabolic engineering have used well-characterized platform organisms such as Saccharomyces cerevisiae and Escherichia coli; however, applications for other microorganisms are on the rise. This review will focus on current applications of ALE as a tool for metabolic engineering and discuss advancements and achievements that have been made in this field.


BMC Systems Biology | 2011

A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2.

Ines Thiele; Daniel R. Hyduke; Benjamin Steeb; Guy Fankam; Douglas K. Allen; Susanna Bazzani; Pep Charusanti; Feng-Chi Chen; Ronan M. T. Fleming; Chao A. Hsiung; Sigrid De Keersmaecker; Yu-Chieh Liao; Kathleen Marchal; Monica L. Mo; Emre Özdemir; Anu Raghunathan; Jennifer L. Reed; Sook-Il Shin; Sara Sigurbjornsdottir; Jonas Steinmann; Suresh Sudarsan; Neil Swainston; Inge Thijs; Karsten Zengler; Bernhard O. Palsson; Joshua N. Adkins; Dirk Bumann

BackgroundMetabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium is a human pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem.ResultsHere, we describe a community-driven effort, in which more than 20 experts in S. Typhimurium biology and systems biology collaborated to reconcile and expand the S. Typhimurium BiGG knowledge-base. The consensus MR was obtained starting from two independently developed MRs for S. Typhimurium. Key results of this reconstruction jamboree include i) development and implementation of a community-based workflow for MR annotation and reconciliation; ii) incorporation of thermodynamic information; and iii) use of the consensus MR to identify potential multi-target drug therapy approaches.ConclusionTaken together, with the growing number of parallel MRs a structured, community-driven approach will be necessary to maximize quality while increasing adoption of MRs in experimental design and interpretation.


Gastroenterology | 2015

Supplementation of Saturated Long-chain Fatty Acids Maintains Intestinal Eubiosis and Reduces Ethanol-induced Liver Injury in Mice

Peng Chen; Manolito Torralba; Justin Tan; Mallory Embree; Karsten Zengler; Peter Stärkel; Jan-Peter van Pijkeren; Jessica DePew; Rohit Loomba; Samuel B. Ho; Jasmohan S. Bajaj; Ece Mutlu; Ali Keshavarzian; Hidekazu Tsukamoto; Karen E. Nelson; Derrick E. Fouts; Bernd Schnabl

BACKGROUND & AIMS Alcoholic liver disease is a leading cause of mortality. Chronic alcohol consumption is accompanied by intestinal dysbiosis, and development of alcoholic liver disease requires gut-derived bacterial products. However, little is known about how alterations to the microbiome contribute to pathogenesis of alcoholic liver disease. METHODS We used the Tsukamoto-French mouse model, which involves continuous intragastric feeding of isocaloric diet or alcohol for 3 weeks. Bacterial DNA from the cecum was extracted for deep metagenomic sequencing. Targeted metabolomics assessed concentrations of saturated fatty acids in cecal contents. To maintain intestinal metabolic homeostasis, diets of ethanol-fed and control mice were supplemented with saturated long-chain fatty acids (LCFA). Bacterial genes involved in fatty acid biosynthesis, amounts of lactobacilli, and saturated LCFA were measured in fecal samples of nonalcoholic individuals and patients with active alcohol abuse. RESULTS Analyses of intestinal contents from mice revealed alcohol-associated changes to the intestinal metagenome and metabolome, characterized by reduced synthesis of saturated LCFA. Maintaining intestinal levels of saturated fatty acids in mice resulted in eubiosis, stabilized the intestinal gut barrier, and reduced ethanol-induced liver injury. Saturated LCFA are metabolized by commensal Lactobacillus and promote their growth. Proportions of bacterial genes involved in fatty acid biosynthesis were lower in feces from patients with active alcohol abuse than controls. Total levels of LCFA correlated with those of lactobacilli in fecal samples from patients with active alcohol abuse but not in controls. CONCLUSIONS In humans and mice, alcohol causes intestinal dysbiosis, reducing the capacity of the microbiome to synthesize saturated LCFA and the proportion of Lactobacillus species. Dietary approaches to restore levels of saturated fatty acids in the intestine might reduce ethanol-induced liver injury in patients with alcoholic liver disease.

Collaboration


Dive into the Karsten Zengler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek R. Lovley

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mallory Embree

University of California

View shared research outputs
Top Co-Authors

Avatar

Haythem Latif

University of California

View shared research outputs
Top Co-Authors

Avatar

Yu Qiu

University of California

View shared research outputs
Top Co-Authors

Avatar

Cristal Zuniga

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tian Zhang

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge