Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karthik Iyer is active.

Publication


Featured researches published by Karthik Iyer.


Nature | 2014

Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges

Jörg Hasenclever; Sonja Theissen-Krah; Lars Rüpke; Jason Phipps Morgan; Karthik Iyer; Sven Petersen; Colin W. Devey

Hydrothermal flow at oceanic spreading centres accounts for about ten per cent of all heat flux in the oceans and controls the thermal structure of young oceanic plates. It also influences ocean and crustal chemistry, provides a basis for chemosynthetic ecosystems, and has formed massive sulphide ore deposits throughout Earth’s history. Despite this, how and under what conditions heat is extracted, in particular from the lower crust, remains largely unclear. Here we present high-resolution, whole-crust, two- and three-dimensional simulations of hydrothermal flow beneath fast-spreading ridges that predict the existence of two interacting flow components, controlled by different physical mechanisms, that merge above the melt lens to feed ridge-centred vent sites. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle–ductile transition. About 60 per cent of the discharging fluid mass is replenished on-axis by warm (up to 300 degrees Celsius) recharge flow surrounding the hot thermal plumes, and the remaining 40 per cent or so occurs as colder and broader recharge up to several kilometres away from the axis that feeds hot (500–700 degrees Celsius) deep-rooted off-axis flow towards the ridge. Despite its lower contribution to the total mass flux, this deep off-axis flow carries about 70 per cent of the thermal energy released at the ridge axis. This combination of two flow components explains the seismically determined thermal structure of the crust and reconciles previously incompatible models favouring either shallower on-axis or deeper off-axis hydrothermal circulation.


Geochemistry Geophysics Geosystems | 2013

Modeling fluid flow in sedimentary basins with sill intrusions: Implications for hydrothermal venting and climate change

Karthik Iyer; Lars Rüpke; Christophe Y. Galerne

Large volumes of magma emplaced within sedimentary basins have been linked to multiple climate change events due to release of greenhouse gases such as CH4. Basin-scale estimates of thermogenic methane generation show that this process alone could generate enough greenhouse gases to trigger global incidents. However, the rates at which these gases are transported and released into the atmosphere are quantitatively unknown. We use a 2D, hybrid FEM/FVM model that solves for fully compressible fluid flow to quantify the thermogenic release and transport of methane and to evaluate flow patterns within these systems. Our results show that the methane generation potential in systems with fluid flow does not significantly differ from that estimated in diffusive systems. The values diverge when vigorous convection occurs with a maximum variation of about 50%. The fluid migration pattern around a cooling, impermeable sill alone generates hydrothermal plumes without the need for other processes such as boiling and/or explosive degassing. These fluid pathways are rooted at the edges of the outer sills consistent with seismic imaging. Methane venting at the surface occurs in three distinct stages and can last for hundreds of thousands of years. Our simulations suggest that although the quantity of methane potentially generated within the contact aureole can cause catastrophic climate change, the rate at which this methane is released into the atmosphere is too slow to trigger, by itself, some of the negative δ13C excursions observed in the fossil record over short time scales (< 10,000 years).


Geochemistry Geophysics Geosystems | 2012

Controls of bathymetric relief on hydrothermal fluid flow at mid‐ocean ridges

Nasser Bani-Hassan; Karthik Iyer; Lars Rüpke; Andrea Borgia

We present quantitative modeling results for the effects of surface relief on hydrothermal convection at ocean-spreading centers investigating how vent site locations and subsurface flow patterns are affected by bathymetry induced sub-seafloor pressure variations. The model is based on a 2-D FEM solver for fluid flow in porous media and is used to simulate hydrothermal convection systematically in 375 synthetic studies. The results of these studies show that bathymetric relief has a profound effect on hydrothermal flow: bathymetric highs induce subsurface pressure variations that can deviate upwelling zones and favor venting at structural highs. The deviation angle from vertical upwelling can be expressed by a single linear dependence relating deviation angle to bathymetric slope and depth of the heat source. These findings are confirmed in two case studies for the East Pacific Rise at 9°30′N and Lucky Strike hydrothermal fields. In both cases, it is possible to predict the observed vent field locations only if bathymetry is taken into account. Our results thereby show that bathymetric relief should be considered in simulations of submarine hydrothermal systems and plays a key role especially in focusing venting of across axis hydrothermal flow onto the ridge axis of fast spreading ridges.


Scientific Reports | 2018

Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis

Thea H. Heimdal; Henrik Svensen; Jahandar Ramezani; Karthik Iyer; Egberto Pereira; René Rodrigues; Morgan T. Jones; Sara Callegaro

The end-Triassic is characterized by one of the largest mass extinctions in the Phanerozoic, coinciding with major carbon cycle perturbations and global warming. It has been suggested that the environmental crisis is linked to widespread sill intrusions during magmatism associated with the Central Atlantic Magmatic Province (CAMP). Sub-volcanic sills are abundant in two of the largest onshore sedimentary basins in Brazil, the Amazonas and Solimões basins, where they comprise up to 20% of the stratigraphy. These basins contain extensive deposits of carbonate and evaporite, in addition to organic-rich shales and major hydrocarbon reservoirs. Here we show that large scale volatile generation followed sill emplacement in these lithologies. Thermal modeling demonstrates that contact metamorphism in the two basins could have generated 88,000 Gt CO2. In order to constrain the timing of gas generation, zircon from two sills has been dated by the U-Pb CA-ID-TIMS method, resulting in 206Pb/238U dates of 201.477 ± 0.062 Ma and 201.470 ± 0.089 Ma. Our findings demonstrate synchronicity between the intrusive phase and the end-Triassic mass extinction, and provide a quantified degassing scenario for one of the most dramatic time periods in the history of Earth.


Philosophical Transactions of the Royal Society A | 2018

Sills and gas generation in the Siberian Traps

Henrik Svensen; Sergei Frolov; G.G. Akhmanov; Alexander G. Polozov; Dougal A. Jerram; Olga V. Shiganova; Nikolay V. Melnikov; Karthik Iyer; Sverre Planke

On its way to the surface, the Siberian Traps magma created a complex sub-volcanic plumbing system. This resulted in a large-scale sill emplacement within the Tunguska Basin and subsequent release of sediment-derived volatiles during contact metamorphism. The distribution of sills and the released sediment-stored gas volume is, however, poorly constrained. In this paper, results from a study of nearly 300 deep boreholes intersecting sills are presented. The results show that sills with thicknesses above 100 m are abundant throughout the upper part of the sedimentary succession. A high proportion of the sills was emplaced within the Cambrian evaporites with average thicknesses in the 115–130 m range and a maximum thickness of 428 m. Thermal modelling of the cooling of the sills shows that the contact metamorphic aureoles are capable of generating 52–80 tonnes of CO2 m−2 with contributions from both marine and terrestrial carbon. When up-scaling these borehole results, an area of 12–19 000 km2 is required to generate 1000 Gt CO2. This represents only 0.7–1.2% of the total area in the Tunguska Basin affected by sills, emphasizing the importance of metamorphic gas generation in the Siberian Traps. These results strengthen the hypothesis of a sub-volcanic trigger and driver for the environmental perturbations during the End-Permian crisis. This article is part of a discussion meeting issue ‘Hyperthermals: rapid and extreme global warming in our geological past’.


AAPG Bulletin | 2018

Importance of evolving fault seals on petroleum systems: Southern Halten terrace, Norwegian Sea

Karthik Iyer; Daniel W. Schmid; Lars Rüpke; Jon Erik Skeie; Frode Karlsen; Ebbe H. Hartz

The role of faults in petroleum systems is important especially in cases where the hydrocarbon accumulation in the prospect or field is fault-dependent. Usually, the properties of faults in petroleum systems are considered as static through time. We present a case study from the southern Halten terrace in the Norwegian Sea which highlights not only the importance of faults but also that the evolution of fault properties is key in determining the correct charge in the fields in the region. The best-fit model shows that in order to match observations the petroleum system requires at least two stages of hydrocarbon migration during which fault properties change from partially to completely sealing with respect to hydrocarbon flow across them. The most likely process that results in fault sealing is cementation due to increasing temperatures caused by the rapid burial during the Quaternary glaciations. This results in the most accurate charge of accumulations in the region while also explaining other observations such as present-day pressure compartmentalization and biodegradation. The best-fit model also implements the source rock thermal evolution based on a 2D basin model that improves the match of fluid GOR in the accumulation to the measured values. This study highlights the importance of multi-scale, multi-physics and multi-stage models in order to obtain results consistent with present day observations.


Earth and Planetary Science Letters | 2010

Feedbacks between mantle hydration and hydrothermal convection at ocean spreading centers

Karthik Iyer; Lars Rüpke; Jason Phipps Morgan


Earth and Planetary Science Letters | 2011

Coupled mechanical and hydrothermal modeling of crustal accretion at intermediate to fast spreading ridges

Sonja Theissen-Krah; Karthik Iyer; Lars Rüpke; Jason Phipps Morgan


Earth and Planetary Science Letters | 2017

Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate

Karthik Iyer; Daniel W. Schmid; Sverre Planke; John Millett


Geoscientific Model Development | 2017

SILLi 1.0: A 1D Numerical Tool Quantifying the Thermal Effects of Sill Intrusions

Karthik Iyer; Henrik Svensen; Daniel W. Schmid

Collaboration


Dive into the Karthik Iyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge