Karthikeyan Baskaran
Linnaeus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karthikeyan Baskaran.
Optometry and Vision Science | 2012
Karthikeyan Baskaran; Robert Rosén; Peter Lewis; Peter Unsbo; Jörgen Gustafsson
Purpose. To investigate the effect of eccentric refractive correction and full aberration correction on both high- and low-contrast grating resolution at the preferred retinal locus (PRL) of a single low-vision subject with a long-standing central scotoma. Methods. The subject was a 68-year-old women with bilateral absolute central scotoma due to Stargardt disease. She developed a single PRL located 25° nasally of the damaged macula in her left eye, this being the better of the two eyes. High- (100%) and low-contrast (25 and 10%) grating resolution acuity was evaluated using four different correction conditions. The first two corrections were solely refractive error corrections, namely, habitual spectacle correction and full spherocylindrical correction. The latter two corrections were two versions of adaptive optics corrections of all aberrations, namely, habitual spectacle correction with aberration correction and full spherocylindrical refractive correction with aberration correction. Results. The mean high-contrast (100%) resolution acuity with her habitual correction was 1.06 logMAR, which improved to 1.00 logMAR with full spherocylindrical correction. Under the same conditions, low-contrast (25%) acuity improved from 1.30 to 1.14 logMAR. With adaptive optics aberration correction, the high-contrast resolution acuities improved to 0.89/0.92 logMAR and the low-contrast acuities improved to 1.04/1.06 logMAR under both correction modalities. The low-contrast (10%) resolution acuity was 1.34 logMAR with adaptive optics aberration correction; however, with purely refractive error corrections, she was unable to identify the orientation of the gratings. Conclusions. Correction of all aberrations using adaptive optics improves both high- and low-contrast resolution acuity at the PRL of a single low-vision subject with long-standing absolute central scotoma.
Journal of Modern Optics | 2011
Linda Lundström; Robert Rosén; Karthikeyan Baskaran; Bart Jaeken; Jörgen Gustafsson; Pablo Artal; Peter Unsbo
A mirror symmetry in the aberrations between the left and right eyes has previously been found foveally, but while a similar symmetry for the peripheral visual field is likely, it has not been investigated. Nevertheless, the peripheral optical quality is often evaluated in only one eye, because it is more time efficient than analyzing the whole visual field of both eyes. This study investigates the correctness of such an approach by measuring the peripheral wavefront aberrations in both eyes of 22 subjects out to ±40° horizontally. The largest aberrations (defocus, astigmatism, and coma) were found to be significantly correlated between the left and right eyes when comparing the same temporal or nasal angle. The slope of the regression line was close to ±1 (within 0.05) for these aberrations, with a negative slope for the horizontally odd aberrations, i.e. the left and right eyes are mirror symmetric. These findings justify that the average result, sampled in one of the two eyes of many subjects, can be generalized to the other eye as well.
Proceedings of SPIE | 2013
Matthew S. Muller; Jason J.A. Green; Karthikeyan Baskaran; Allen Ingling; Jeffrey L Clendenon; Thomas Gast; Ann E. Elsner
A digital light projector is implemented as an integrated illumination source and scanning element in a confocal nonmydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). To simulate scanning, a series of illumination lines are rapidly projected on the retina. The backscattered light is imaged onto a 2-dimensional rolling shutter CMOS sensor. By temporally and spatially overlapping the illumination lines with the rolling shutter, confocal imaging is achieved. This approach enables a low cost, flexible, and robust design with a small footprint. The 3rd generation DLO technical design is presented, using a DLP LightCrafter 4500 and USB3.0 CMOS sensor. Specific improvements over previous work include the use of yellow illumination, filtered from the broad green LED spectrum, to obtain strong blood absorption and high contrast images while reducing pupil constriction and patient discomfort.
Optometry and Vision Science | 2010
Karthikeyan Baskaran; Baskar Theagarayan; Staffan Carius; Jörgen Gustafsson
Purpose. The purpose of this study is to assess the intrasession repeatability of ocular aberration measurements in the peripheral visual field with a commercially available Shack-Hartmann aberrometer (complete ophthalmic analysis system-high definition-vision research). The higher-order off-axis aberrations data in young healthy emmetropic eyes are also reported. Methods. The aberrations of the right eye of 18 emmetropes were measured using an aberrometer with an open field of view that allows peripheral measurements. Five repeated measures of ocular aberrations were obtained and assessed in steps of 10° out to ±40° in the horizontal visual field (nasal + and temporal −) and −20° in the inferior visual field. The coefficient of repeatability, coefficient of variation, and the intraclass correlation coefficient were calculated as a measure of intrasession repeatability. Results. In all eccentric angles, the repeatability of the third- and fourth-order aberrations was better than the fifth and sixth order aberrations. The coefficient of variation was <30% and the intraclass correlation coefficient was >0.90 for the third and fourth order but reduced gradually for higher orders. There was no statistical significant difference in variance of total higher-order root mean square between on- and off-axis measurements (p > 0.05). The aberration data in this group of young emmetropes showed that the horizontal coma (C31) was most positive at 40° in the temporal field, decreasing linearly toward negative values with increasing off-axis angle into the nasal field, whereas all other higher-order aberrations showed little or no change. Conclusions. The complete ophthalmic analysis system-high definition-vision research provides fast, repeatable, and valid peripheral aberration measurements and can be used efficiently to measure off-axis aberrations in the peripheral visual field.
Optometry and Vision Science | 2014
Peter Lewis; Karthikeyan Baskaran; Robert Rosén; Linda Lundström; Peter Unsbo; Jörgen Gustafsson
Purpose The purpose of this study was twofold: to verify a fast, clinically applicable method for determining off-axis refraction and to assess the impact of objectively obtained off-axis refractive correction on peripheral low-contrast visual acuity. Methods We measured peripheral low-contrast resolution acuity with Gabor patches both with and without off-axis correction at 20 degrees in the nasal visual field of 10 emmetropic subjects; the correction was obtained using a commercial open-field Hartmann-Shack wavefront sensor, the COAS-HD VR aberrometer. Off-axis refractive errors were calculated for a 5-mm circular pupil inscribed within the elliptical wavefront by COAS using the instruments’ inbuilt “Seidel sphere” method. Results Most of the subjects had simple myopic astigmatism, at 20 degrees in the nasal visual field ranging from −1.00 to −2.00 DC, with axis orientations generally near 90 degrees. The mean uncorrected and corrected low-contrast resolution acuities for all subjects were 0.92 and 0.86 logMAR, respectively (an improvement of 0.06 logMAR). For subjects with a scalar power refractive error of 1.00 diopters or more, the average improvement was 0.1 logMAR. The observed changes in low-contrast resolution acuity were strongly correlated with off-axis astigmatism (Pearson r = 0.95; p < 0.0001), the J180 cross-cylinder component (Pearson r = 0.82; p = 0.0034), and power scalar (Pearson r = −0.75; p = 0.0126). Conclusions The results suggest that there are definite benefits in correcting even moderate amounts of off-axis refractive errors; in this study, as little as −1.50 DC of off-axis astigmatism gave improvements of up to a line in visual acuity. It may be even more pertinent for people who rely on optimal peripheral visual function, specifically those with central visual field loss; the use of open-field aberrometers could be clinically useful in rapidly determining off-axis refractive errors specifically for this patient group who are generally more challenging to refract.
Optometry and Vision Science | 2017
Mastour A. Alhamami; Ann E. Elsner; Victor E. Malinovsky; Christopher A. Clark; Bryan P. Haggerty; Glen Y. Ozawa; Jorge Cuadros; Karthikeyan Baskaran; Thomas Gast; Taras V Litvin; Matthew S. Muller; Shane Brahm; Stuart B Young; Masahiro Miura
ABSTRACT Purpose To investigate whether cysts in diabetic macular edema are better visualized in the red channel of color fundus camera images, as compared with the green channel, because color fundus camera screening methods that emphasize short-wavelength light may miss cysts in patients with dark fundi or changes to outer blood retinal barrier. Methods Fundus images for diabetic retinopathy photoscreening were acquired for a study with Aeon Imaging, EyePACS, University of California Berkeley, and Indiana University. There were 2047 underserved, adult diabetic patients, of whom over 90% self-identified as a racial/ethnic identify other than non-Hispanic white. Color fundus images at nominally 45 degrees were acquired with a Canon Cr-DGi non-mydriatic camera (Tokyo, Japan) then graded by an EyePACS certified grader. From the 148 patients graded to have clinically significant macular edema by the presence of hard exudates in the central 1500 μm of the fovea, we evaluated macular cysts in 13 patients with cystoid macular edema. Age ranged from 33 to 68 years. Color fundus images were split into red, green, and blue channels with custom Matlab software (Mathworks, Natick, MA). The diameter of a cyst or confluent cysts was quantified in the red-channel and green-channel images separately. Results Cyst identification gave complete agreement between red-channel images and the standard full-color images. This was not the case for green-channel images, which did not expose cysts visible with standard full-color images in five cases, who had dark fundi. Cysts appeared more numerous and covered a larger area in the red channel (733 ± 604 μm) than in the green channel (349 ± 433 μm, P < .006). Conclusions Cysts may be underdetected with the present fundus camera methods, particularly when short-wavelength light is emphasized or in patients with dark fundi. Longer wavelength techniques may improve the detection of cysts and provide more information concerning the early stages of diabetic macular edema or the outer blood retinal barrier.
Optometry and Vision Science | 2011
Karthikeyan Baskaran; Peter Unsbo; Jörgen Gustafsson
Purpose. To compare peripheral lower and higher order aberrations across the horizontal (±40°) and inferior (−20°) visual fields in healthy groups of young and old emmetropes. Methods. We have measured off-axis aberrations in the groups of 30 younger (24 ± 3 years) and 30 older (58 ± 5 years) emmetropes. The aberrations of OD were measured using the COAS-HD VR Shack-Hartmann aberrometer in 10° steps to ±40° horizontally and −20° inferiorly in the visual field. The aberrations were quantified with Zernike polynomials for a 4 mm pupil diameter. The second-order aberration coefficients were converted to their respective refraction components (M, J45, and J180). Mixed between-within subjects, analysis of variance were used to determine whether there were significant differences in the refraction and aberration components for the between-subjects variable age and the within-subjects variable eccentricity. Results. Peripheral refraction components were similar in both age groups. Among the higher order coefficients, horizontal coma (C31) and spherical aberration (C40) varied mostly between the groups. Coma increased linearly with eccentricity, at a more rapid rate in the older group than in the younger group. Spherical aberration was more positive in the older group compared with the younger group. Higher order root mean square increased more rapidly with eccentricity in the older group. Conclusions. Like the axial higher order aberrations, the peripheral higher order aberrations of emmetropes increase with age, particularly coma and spherical aberration.
Case reports in ophthalmological medicine | 2018
Laura Hernandez-Moreno; Natacha Moreno Perdomo; Tomas S. Aleman; Karthikeyan Baskaran; António Filipe Macedo
The purpose of this report is to describe a case of bilateral foveal hypoplasia in the absence of other ophthalmological or systemic manifestations. We characterize the case of a 9-year-old Caucasian male who underwent full ophthalmologic examination, including functional measures of vision and structural measurements of the eye. Best corrected visual acuity was 0.50 logMAR in the right eye and 0.40 logMAR in the left eye. Ophthalmoscopy revealed a lack of foveal reflex that was further investigated. Optical coherence tomography (OCT) confirmed the absence of foveal depression (pit). OCT images demonstrated the abnormal structure of retina in a region in which we expected a fovea; these findings were decisive to determine the cause of reduced acuity in the child.
Investigative Ophthalmology & Visual Science | 2013
Peter Lewis; Victoria Holm; Karthikeyan Baskaran; Jörgen Gustafsson
Investigative Ophthalmology & Visual Science | 2012
Peter Lewis; Karthikeyan Baskaran; Robert Rosén; Peter Unsbo; Jörgen Gustafsson