Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karundevi Balasubramanian is active.

Publication


Featured researches published by Karundevi Balasubramanian.


Free Radical Research | 2005

Studies on the protective role of vitamin C and E against polychlorinated biphenyl (Aroclor 1254)—induced oxidative damage in Leydig cells

Palaniappan Murugesan; Thirupathi Muthusamy; Karundevi Balasubramanian; J. Arunakaran

Free radical production and lipid peroxidation are potentially important mediators in testicular physiology and toxicology. Polychlorinated biphenyls (PCBs) are global environmental contaminants that cause disruption of the endocrine system in human and animals. The present study was conducted to elucidate the protective role of vitamin C and E against Aroclor 1254-induced changes in Leydig cell steroidogenesis and antioxidant system. Adult male rats were dosed for 30 days with daily intraperitoneal (ip) injection of 2 mg/kg Aroclor or vehicle (corn oil). One group of rats was treated with vitamin C (100 mg/kg bw/day) while the other group was treated with vitamin E (50 mg/kg bw/day) orally, simultaneously with Aroclor 1254 for 30 days. One day after the last treatment, animals were euthanized and blood was collected for the assay of serum hormones such as luteinizing hormone (LH), thyroid stimulating hormone (TSH), prolactin (PRL), triiodothyronine (T3), thyroxine (T4), testosterone and estradiol. Testes were quickly removed and Leydig cells were isolated in aseptic condition. Purity of Leydig cells was determined by 3β-hydroxysteroid dehydrogenase (3β-HSD) staining method. Purified Leydig cells were used for quantification of cell surface LH receptors and steroidogenic enzymes such as cytochrome P450 side chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β- HSD). Leydig cellular enzymatic antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), γ-glutamyl transpeptidase (γ-GT), glutathione-S-transferase (GST) and non-enzymatic antioxidants such as vitamin C and E were assayed. Lipid peroxidation (LPO) and reactive oxygen species (ROS) were also estimated in Leydig cells. Aroclor 1254 treatment significantly reduced the serum LH, TSH, PRL, T3, T4, testosterone and estradiol. In addition to this, Leydig cell surface LH receptors, activities of the steroidogenic enzymes such as cytochrome P450scc, 3β-HSD, 17β-HSD, antioxidant enzymes SOD, CAT, GPX, GR, γ-GT, GST and non-enzymatic antioxidants such as vitamin C and E were significantly diminished whereas, LPO and ROS were markedly elevated. However, the simultaneous administration of vitamin C and E in Aroclor 1254 exposed rats resulted a significant restoration of all the above-mentioned parameters to the control level. These observations suggest that vitamin C and E have ameliorative role against adverse effects of PCB on Leydig cell steroidogenesis.


Reproductive Toxicology | 2008

Polychlorinated biphenyl (Aroclor 1254) inhibits testosterone biosynthesis and antioxidant enzymes in cultured rat Leydig cells

Palaniappan Murugesan; Thirupathi Muthusamy; Karundevi Balasubramanian; J. Arunakaran

Polychlorinated biphenyls (PCBs) are environmental contaminants that in humans and animals disturb normal endocrine functions including gonadal functions. The present studies were aimed at determining the direct effects of PCB on Leydig cell testosterone production and antioxidant system in vitro. Adult Leydig cells were purified by Percoll gradient centrifugation method and the purity of Leydig cells was also determined by 3beta-hydroxysteroid dehydrogenase (3beta-HSD) staining method. Purified Leydig cells were exposed to different concentrations (10(-10) to 10(-7) M) of PCB (Aroclor 1254) for 6 and 12 h under basal and LH-stimulated conditions. After incubation, the cultured media were collected and used for the assay of testosterone. The treated cells were used for quantification of cell surface LH receptors and activity of steroidogenic enzymes such as cytochrome P450 side chain cleavage enzyme (P450scc), 3beta-HSD and 17beta-hydroxysteroid dehydrogenase (17beta-HSD). In addition, Leydig cellular enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), gamma-glutamyl transpeptidase (gamma-GT), glutathione-S-transferase (GST) and non-enzymatic antioxidants such as vitamin C and E were assayed. Lipid peroxidation (LPO) and reactive oxygen species (ROS) were also estimated in Leydig cells. The results indicated that Aroclor 1254 (10(-8) and 10(-7) M) treatments significantly inhibit basal and LH-stimulated testosterone production. In addition to this, the activity of steroidogenic enzymes, enzymatic and non-enzymatic antioxidants were significantly diminished in a dose- and time-dependent manner. Moreover, the LPO and ROS were elevated in a dose- and time-dependent manner under basal and LH-stimulated conditions. These findings suggest that PCBs can act directly on Leydig cells to inhibit testosterone biosynthesis by reducing steroidogenic enzymes, enzymatic and non-enzymatic antioxidants.


Human & Experimental Toxicology | 2005

Impact of polychlorinated biphenyl Aroclor 1254 on testicular antioxidant system in adult rats.

P Murugesan; J Senthilkumar; Karundevi Balasubramanian; M. M. Aruldhas; J. Arunakaran

To clarify the reproductive toxicity of polychlorinated biphenyl compounds through determination of testicular lipid peroxidation, reactive oxygen species and enzymatic and non-enzymatic antioxidants in rats exposed to Aroclor 1254. Adult male rats were administered Aroclor 1254 at a dose of 2 mg/kg per day ip for 30 days. The rats were sacrificed 24 hours after last dosing and the serum and other tissues collected and processed for relevant determinations. The body weight and the weights of the testis, epididymis, ventral prostate and seminal vesicle and the serum testosterone and estradiol were significantly decreased in Aroclor 1254 treated rats. The testicular lipid peroxidation, hydrogen peroxide and hydroxyl radical were significantly elevated whereas, testicular antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and glutathione reductase (GR) were significantly decreased. The non-enzymatic antioxidants, vitamin C and vitamin E, were also decreased. These results suggest that Aroclor 1254 induces an increase in the lipid peroxidation, hydrogen peroxide and hydroxyl radical and diminish in the antioxidant defense system in rats, indicating that the free radical-dependent mechanism may play an important role in the testicular toxicity of polychlorinated biphenyls.


Journal of Cellular Biochemistry | 2013

Diethyl Hexyl Phthalate (DEHP) is associated with insulin resistance in adipose tissue of male rat: Protective role of antioxidant vitamins (C & E)†

Parsanathan Rajesh; Sampath Sathish; Chinnapaiyan Srinivasan; Jayaraman Selvaraj; Karundevi Balasubramanian

Diethyl hexyl phthalate (DEHP) is a plasticizer, commonly used in a variety of products, including lubricants, perfumes, hairsprays and cosmetics, construction materials, wood finishers, adhesives, floorings and paints. DEHP is an endocrine disruptor and it has a continuum of influence on various organ systems in human beings and experimental animals. However, specific effects of DEHP on insulin signaling in adipose tissue are not known. Adult male albino rats of Wistar strain were divided into four groups. Control, DEHP treated (dissolved in olive oil at a dose of 10, and 100 mg/kg body weight, respectively, once daily through gastric intubations for 30 days) and DEHP + vitamin E (50 mg/kg body weight) and C (100 mg/kg body weight) dissolved in olive oil and distilled water, respectively, once daily through gastric intubations for 30 days. After the completion of treatment, adipose tissue was dissected out to assess various parameters. DEHP treatment escalated H2O2 and hydroxyl radical levels as well as lipid peroxidation in the adipose tissue. DEHP impaired the expression of insulin signaling molecules and their phosphorelay pathways leading to diminish plasma membrane GLUT4 level and thus decreased glucose uptake and oxidation. Blood glucose level was elevated as a result of these changes. Supplementation of vitamins (C & E) prevented the DEHP‐induced changes. It is concluded that DEHP‐induced ROS and lipid peroxidation disrupts the insulin signal transduction in adipose tissue and favors glucose intolerance. Antioxidant vitamins have a protective role against the adverse effect of DEHP. J. Cell. Biochem. 114: 558–569, 2013.


Metabolism-clinical and Experimental | 2009

Sex steroids deficiency impairs glucose transporter 4 expression and its translocation through defective Akt phosphorylation in target tissues of adult male rat

Thirupathi Muthusamy; Palaniappan Murugesan; Karundevi Balasubramanian

There is a substantial body of evidence suggesting that altered level of sex steroids in male is associated with insulin resistance and type 2 diabetes mellitus. However, the mechanism of this effect is not apparent. Our recent study indicated that testosterone deprivation decreases insulin receptor expression and glucose oxidation in insulin target tissues. The present study was designed to assess the impact of deficiency of testosterone and estradiol on Akt phosphorylation, glucose transporter expression, and glucose uptake in skeletal muscle, adipose tissue, and liver of adult male rat. Adult male albino rats of Wistar strain were orchidectomized and supplemented with testosterone (100 microg/100 g body weight per day), estradiol (5 microg/100 g body weight per day), and their combination (100 microg testosterone plus 5 microg estradiol per 100 g body weight per day) for 15 days from the 11th day postorchidectomy. On the day after the last treatment, animals were perfused; and blood was collected for the assay of plasma glucose, serum insulin, testosterone, and estradiol. Gastrocnemius muscle, adipose tissue, and liver were dissected out and used for the assay of various parameters such as Akt phosphorylation, glucose transporter (GLUT) 2 and 4 expression, glucose uptake, and glycogenic and glycogenolytic enzymes activity. Castration elevated the blood glucose level, which was accompanied by inhibitory effect on serum insulin, Akt phosphorylation, GLUT4 expression and its plasma membrane population, glucose uptake, glycogen and glycogen synthase activity, and stimulatory effect on GLUT2 expression and glycogen phosphorylase activity in tissues studied. After testosterone and its combination with estradiol supplementation to castrated rats, a normal pattern of all these parameters was restored. Estradiol administration to castrated rats increased the Akt phosphorylation without altering other parameters studied. It is concluded from the present study that sex steroids deficiency-induced defective glucose uptake in skeletal muscle and adipose tissue is mediated through defective Akt phosphorylation and GLUT4 expression in plasma membrane.


Journal of Endocrinology | 2014

Phthalate exposure in utero causes epigenetic changes and impairs insulin signalling

Parsanathan Rajesh; Karundevi Balasubramanian

Di-(2-ethylhexyl)phthalate (DEHP) is an endocrine-disrupting chemical (EDC), widely used as a plasticiser. Developmental exposure to EDCs could alter epigenetic programming and result in adult-onset disease. We investigated whether DEHP exposure during development affects glucose homoeostasis in the F1 offspring as a result of impaired insulin signal transduction in gastrocnemius muscle. Pregnant Wistar rats were administered DEHP (0, 1, 10 and 100 mg/kg per day) from embryonic days 9-21 orally. DEHP-exposed offspring exhibited elevated blood glucose, impaired serum insulin, glucose tolerance and insulin tolerance, along with reduced insulin receptor, glucose uptake and oxidation in the muscle at postnatal day 60. The levels of insulin signalling molecules and their phosphorylation were down-regulated in DEHP-exposed offspring. However, phosphorylated IRS1(Ser636/639), which impedes binding of downstream effectors and the negative regulator (PTEN) of PIP3, was increased in DEHP-exposed groups. Down-regulation of glucose transporter 4 (Glut4 (Slc2a4)) gene expression and increased GLUT4(Ser488) phosphorylation, which decreases its intrinsic activity and translocation towards the plasma membrane, were recorded. Chromatin immunoprecipitation assays detected decreased MYOD binding and increased histone deacetylase 2 interaction towards Glut4, indicative of the tight chromatin structure at the Glut4 promoter. Increased DNMTs and global DNA methylation levels were also observed. Furthermore, methylation of Glut4 at the MYOD-binding site was increased in DEHP-exposed groups. These findings indicate that, gestational DEHP exposure predisposes F1 offspring to glucometabolic dysfunction at adulthood by down-regulating the expression of critical genes involved in the insulin signalling pathway. Furthermore, DEHP-induced epigenetic alterations in Glut4 appear to play a significant role in disposition towards this metabolic abnormality.


Biomedicine & Pharmacotherapy | 2009

Effects of streptozotocin (STZ)-induced diabetes and insulin replacement on rat ventral prostate

E. Suthagar; S. Soudamani; S. Yuvaraj; A. Ismail Khan; M.M. Aruldhas; Karundevi Balasubramanian

BACKGROUND Diabetes mellitus due to insulin deficiency has adverse effect on all organ systems including reproductive organs. Streptozotocin (STZ)-induced diabetes in rats provides a relevant model to study reproductive dysfunction under diabetic conditions, as they exhibit a number of deficits in reproductive function that resemble those seen in humans. The present investigation was designed to delineate the impact of STZ-induced diabetes and insulin replacement on the rat ventral prostate. METHODS Healthy adult male rats of Wistar strain were divided into three groups: Group I: Control; Group II: STZ-diabetic (rats were treated with a single intraperitoneal injection of streptozotocin (STZ) at a dose of 65 mg/kg body weight); Group III: Insulin replaced (after 3 days of STZ treatment, a group of adult male diabetic rats was given insulin at a dose of 3U/100g body weight in two equally divided doses at 08:00 and 18:00 h). All the rats were killed after 20 days of treatment and ventral prostate was removed and processed for biochemical estimations such as glucose oxidation, nuclear and cytosolic androgen and estrogen receptors, fructose, acid and alkaline phosphatases. RESULTS STZ-diabetes significantly decreased the body weight. Glucose oxidation, androgen and estrogen receptor concentration were also decreased in ventral prostate, but the fructose concentration was increased. Specific activities of both acid and alkaline phosphatases were also markedly decreased due to diabetes. CONCLUSION The results of this study suggest adverse effects of STZ-induced diabetes on the biochemical profiles as well as androgen and estrogen receptors of rat ventral prostate. Amelioration of these changes (partially or completely) by insulin replacement indicates that optimal insulin is essential for maintaining functional integrity of ventral prostate.


Environmental Toxicology and Pharmacology | 2013

Effect of Bisphenol-A on insulin signal transduction and glucose oxidation in liver of adult male albino rat.

Shankar Jayashree; Dhananjayan Indumathi; Narasimhan Akilavalli; Sampath Sathish; Jayaraman Selvaraj; Karundevi Balasubramanian

Bisphenol-A (BPA) has been classified as an endocrine disruptor which disrupts normal cell function by acting as an estrogen agonist. Environmentally relevant doses of the Bisphenol-A have profound effects on rat endocrine pancreas, an essential organ involved in glucose homeostasis. Bisphenol-A acts on insulin releasing β-cells whereby it increases the pancreatic insulin content and secretion and also favours post prandial hyperinsulinemia and insulin resistance in male mice. Liver plays a central role in the control of glucose production and regulation of insulin secretion. It is one of the primary organs that are initially confronted by damage from toxic substances, xenobiotics and environmental hormones. The present study was designed to assess the effect of Bisphenol-A on insulin signal transduction and glucose oxidation in liver of adult male albino rat. Wistar strain albino rats were selected and divided into three groups, Group-I: Control, Group-II: 20 mg BPA treated, Group-III: 200 mg BPA treated. The IR (insulin receptor) and Akt (PKB: protein kinase B) mRNA and protein showed a decreased expression pattern in the high dose group. Eventhough there was an increase in serum insulin and a decrease in serum testosterone levels in the high dose group, the fasting blood glucose level remained unaltered. Glucose oxidation and glycogen content were found to be decreased in both high and low dose treated groups. Results of this study suggest that Bisphenol-A treatment impairs hepatic glucose oxidation and glycogen content through defective insulin signal transduction.


The Journal of Steroid Biochemistry and Molecular Biology | 2000

Chronic administration of corticosterone impairs LH signal transduction and steroidogenesis in rat Leydig cells

B. Ravi Sankar; R.R.M. Maran; R. Sivakumar; P. Govindarajulu; Karundevi Balasubramanian

The mechanism involved in the inhibitory actions of chronic corticosterone treatment on Leydig cell steroidogenesis was studied in adult Wistar rats. Rats were treated with corticosterone-21-acetate (2 mg/100 g body weight, i.m., twice daily) for 15 days and another set of rats was treated with corticosterone plus ovine luteinizing hormone (oLH) (100 microg/kg body weight, s.c., daily) for 15 days. Chronic treatment with corticosterone increased serum corticosterone but decreased serum LH, testosterone, estradiol and testicular interstitial fluid (TIF) testosterone and estradiol concentrations. Administration of LH with corticosterone partially prevented the decrease in serum and TIF testosterone and estradiol. Leydig cell LH receptor number, basal and LH-stimulated cAMP production were diminished by corticosterone treatment which remained at control level in the corticosterone plus LH treated rats. Activities of steroidogenic enzymes, 3beta- and 17beta-hydroxysteroid dehydrogenase (3beta-HSD and 17beta-HSD) were significantly decreased in corticosterone treated rats. LH plus corticosterone treatment did not affect 3beta-HSD activity but decreased 17beta-HSD activity, indicating a direct inhibitory effect of excess corticosterone on Leydig cell testosterone synthesis. The indirect effect of corticosterone, thus, assume to be mediated through lower LH which regulates the activity of 3beta-HSD. Basal, LH and cAMP-stimulated testosterone production by Leydig cells of corticosterone and corticosterone plus LH treated rats were decreased compared to control suggesting the deleterious effect of excess corticosterone on LH signal transduction and thus steroidogenesis.


Human & Experimental Toxicology | 2013

Effect of bisphenol-A on insulin signal transduction and glucose oxidation in skeletal muscle of adult male albino rat

D Indumathi; S Jayashree; Jayaraman Selvaraj; Sampath Sathish; Chinnaiyan Mayilvanan; Narasimhan Akilavalli; Karundevi Balasubramanian

The estrogenic monomer bisphenol-A (BPA) is an endocrine-disrupting chemical used in the production of epoxy resins, plastic food and beverage containers, leading to ubiquitous human exposure. Environmentally relevant doses of BPA have profound effects on mice endocrine pancreas. It increases pancreatic insulin content and favors postprandial hyperinsulinemia and insulin resistance in male mice. Skeletal muscle plays a crucial role in maintaining systemic glucose metabolism. In the present study, we investigated the possible effects of BPA on insulin-signaling molecules and glucose oxidation in skeletal muscle of male rat. Adult male Wistar albino rats were divided into three groups. Group I: control (vehicle treated) and groups II and III were administered with BPA orally (20 and 200 mg/kg bw/day, respectively). Although there was no change in the levels of insulin receptor (IR), Akt (protein kinase B) and glucose transporter-4 (GLUT4) messenger RNA, BPA significantly decreased the IR, Akt and GLUT4 protein levels (both plasma membrane and cytosolic fraction) of the gastrocnemius muscle. There was an increase in serum insulin and decrease in serum testosterone levels but fasting blood glucose level remained unaltered. In conclusion, BPA has adverse effects on phosphorylation of Akt, GLUT4 translocation and 14C-glucose oxidation.

Collaboration


Dive into the Karundevi Balasubramanian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge