Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karunesh Arora is active.

Publication


Featured researches published by Karunesh Arora.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Large-scale allosteric conformational transitions of adenylate kinase appear to involve a population-shift mechanism

Karunesh Arora; Charles L. Brooks

Large-scale conformational changes in proteins are often associated with the binding of a substrate. Because conformational changes may be related to the function of an enzyme, understanding the kinetics and energetics of these motions is very important. We have delineated the atomically detailed conformational transition pathway of the phosphotransferase enzyme adenylate kinase (AdK) in the absence and presence of an inhibitor. The computed free energy profiles associated with conformational transitions offer detailed mechanistic insights into, as well as kinetic information on, the ligand binding mechanism. Specifically, potential of mean force calculations reveal that in the ligand-free state, there is no significant barrier separating the open and closed conformations of AdK. The enzyme samples near closed conformations, even in the absence of its substrate. The ligand binding event occurs late, toward the closed state, and transforms the free energy landscape. In the ligand-bound state, the closed conformation is energetically most favored with a large barrier to opening. These results emphasize the underlying dynamic nature of the enzyme and indicate that the conformational transitions in AdK are more intricate than a mere two-state jump between the crystal-bound and -unbound states. Based on the existence of the multiple conformations of the enzyme in the open and closed states, a different viewpoint of ligand binding is presented. Our estimated activation energy barrier for the conformational transition is also in reasonable accord with the experimental findings.


Biophysical Journal | 2009

K+/Na+ Selectivity in Toy Cation Binding Site Models Is Determined by the ‘Host’

David L. Bostick; Karunesh Arora; Charles L. Brooks

The macroscopic ion-selective behavior of K(+) channels is mediated by a multitude of physiological factors. However, considering the carbonyl-lined binding site of a conductive K(+) channel as a canonical eightfold coordinated construct can be useful in understanding the principles that correlate the channels structure with its function. We probe the effects of structure and chemical composition on the K(+)/Na(+) selectivity provided by a variety of simplified droplet-like ion binding site models. We find that when carbonyl- and water-based models capture the qualitative structural features of the K(+) channel binding site, a selective preference for K(+) emerges. Thus our findings suggest that the preference for K(+) over Na(+) exhibited by such models is principally built-in, and is not due to a unique K(+)-selective property of carbonyl functional groups. This suggestion is confirmed by a general thermodynamic assessment, which provides a basis for using simplified models to study the design principles underlying the molecular evolution of K(+) channels.


Theoretical Chemistry Accounts | 2012

Perspective: pre-chemistry conformational changes in DNA polymerase mechanisms

Tamar Schlick; Karunesh Arora; William A. Beard; Samuel H. Wilson

In recent papers, there has been a lively exchange concerning theories for enzyme catalysis, especially the role of protein dynamics/pre-chemistry conformational changes in the catalytic cycle of enzymes. Of particular interest is the notion that substrate-induced conformational changes that assemble the polymerase active site prior to chemistry are required for DNA synthesis and impact fidelity (i.e., substrate specificity). High-resolution crystal structures of DNA polymerase β representing intermediates of substrate complexes prior to the chemical step are available. These structures indicate that conformational adjustments in both the protein and substrates must occur to achieve the requisite geometry of the reactive participants for catalysis. We discuss computational and kinetic methods to examine possible conformational change pathways that lead from the observed crystal structure intermediates to the final structures poised for chemistry. The results, as well as kinetic data from site-directed mutagenesis studies, are consistent with models requiring pre-chemistry conformational adjustments in order to achieve high fidelity DNA synthesis. Thus, substrate-induced conformational changes that assemble the polymerase active site prior to chemistry contribute to DNA synthesis even when they do not represent actual rate-determining steps for chemistry.


Journal of Physical Chemistry B | 2010

Conformational dynamics in human purine nucleoside phosphorylase with reactants and transition-state analogues

Jennifer S. Hirschi; Karunesh Arora; Charles L. Brooks; Vern L. Schramm

Dynamic motions of human purine nucleoside phosphorylase (hPNP) in complex with transition-state analogues and reactants were studied using 10 ns explicit solvent molecular dynamics simulations. hPNP is a homotrimer that catalyzes the phosphorolysis of purine 6-oxynucleosides. The ternary complex of hPNP includes the binding of a ligand and phosphate to the active site. Molecular dynamics simulations were performed on the ternary complex of six ligands including the picomolar transition-state analogues, Immucillin-H (K(d) = 56 pM), DADMe-Immucillin-H (K(d) = 8.5 pM), DATMe-Immucillin-H (K(d) = 8.6 pM), SerMe-Immucillin-H (K(d) = 5.2 pM), the substrate inosine, and a complex containing only phosphate. Protein-inhibitor complexes of the late transition-state inhibitors, DADMe-Imm-H and DATMe-Imm-H, are inflexible. Despite the structural similarity of SerMe-Imm-H and DATMe-Imm-H, the protein complex of SerMe-Imm-H is flexible, and the inhibitor is highly mobile within the active sites. All inhibitors exhibit an increased number of nonbonding interactions in the active site relative to the substrate inosine. Water density within the catalytic site is lower for DADMe-ImmH, DATMe-Imm-H, and SerMe-Imm-H than that for the substrate inosine. Tight binding of the picomolar inhibitors results from increased interactions within the active site and a reduction in the number of water molecules organized within the catalytic site relative to the substrate inosine.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Modulation of frustration in folding by sequence permutation

R. Paul Nobrega; Karunesh Arora; Sagar V. Kathuria; Rita Graceffa; Raúl A. Barrea; Liang Guo; Srinivas Chakravarthy; Osman Bilsel; Thomas C. Irving; Charles L. Brooks; C. Robert Matthews

Significance Folding mechanisms of large proteins are often complicated by the existence of kinetic traps that impede progress toward the native conformation. We have tested the role of chain connectivity in creating such traps by permuting the sequence of a small α/β/α sandwich protein, the chemotaxis response regulator Y. An approach combining experimental and native-centric simulations reveals that chain entropy and aliphatic-rich sequences conspire to create frustrated species whose structures and stabilities vary with connectivity. The initial events in folding reflect not a random collapse driven by the hydrophobic effect but rather the accumulation of substructures favored by low-contact-order nonpolar interactions in the polypeptide. The conserved global free-energy minimum of the native conformation ultimately resolves these early frustrations in folding. Folding of globular proteins can be envisioned as the contraction of a random coil unfolded state toward the native state on an energy surface rough with local minima trapping frustrated species. These substructures impede productive folding and can serve as nucleation sites for aggregation reactions. However, little is known about the relationship between frustration and its underlying sequence determinants. Chemotaxis response regulator Y (CheY), a 129-amino acid bacterial protein, has been shown previously to populate an off-pathway kinetic trap in the microsecond time range. The frustration has been ascribed to premature docking of the N- and C-terminal subdomains or, alternatively, to the formation of an unproductive local-in-sequence cluster of branched aliphatic side chains, isoleucine, leucine, and valine (ILV). The roles of the subdomains and ILV clusters in frustration were tested by altering the sequence connectivity using circular permutations. Surprisingly, the stability and buried surface area of the intermediate could be increased or decreased depending on the location of the termini. Comparison with the results of small-angle X-ray–scattering experiments and simulations points to the accelerated formation of a more compact, on-pathway species for the more stable intermediate. The effect of chain connectivity in modulating the structures and stabilities of the early kinetic traps in CheY is better understood in terms of the ILV cluster model. However, the subdomain model captures the requirement for an intact N-terminal domain to access the native conformation. Chain entropy and aliphatic-rich sequences play crucial roles in biasing the early events leading to frustration in the folding of CheY.


Topics in Current Chemistry | 2013

Multiple Intermediates, Diverse Conformations, and Cooperative Conformational Changes Underlie the Catalytic Hydride Transfer Reaction of Dihydrofolate Reductase

Karunesh Arora; Charles L. Brooks

It has become increasingly clear that protein motions play an essential role in enzyme catalysis. However, exactly how these motions are related to an enzymes chemical step is still intensely debated. This chapter examines the possible role of protein motions that display a hierarchy of timescales in enzyme catalysis. The linkage between protein motions and catalysis is investigated in the context of a model enzyme, E. coli dihydrofolate reductase (DHFR), that catalyzes the hydride transfer reaction in the conversion of dihydrofolate to tetrahydrofolate. The results of extensive computer simulations probing the protein motions that are manifest during different steps along the turnover cycle of DHFR are summarized. Evidence is presented that the protein motions modulate the catalytic efficacy of DHFR by generating a conformational ensemble conducive to the hydride transfer. The alteration of the equilibrium conformational ensemble rather than any protein dynamical effects is found to be sufficient to explain the rate-diminishing effects of mutation on the kinetics of the enzyme. These data support the view that the protein motions facilitate catalysis by establishing reaction competent conformations of the enzyme, but they do not directly couple to the chemical reaction itself. These findings have broad implications for our understanding of enzyme mechanisms and the design of novel protein catalysts.


Journal of the American Chemical Society | 2014

pH-induced stability switching of the bacteriophage HK97 maturation pathway.

Eric R. May; Karunesh Arora; Charles L. Brooks

Many viruses undergo large-scale conformational changes during their life cycles. Blocking the transition from one stage of the life cycle to the next is an attractive strategy for the development of antiviral compounds. In this work, we have constructed an icosahedrally symmetric, low-energy pathway for the maturation transition of bacteriophage HK97. By conducting constant-pH molecular dynamics simulations on this pathway, we identify which residues are contributing most significantly to shifting the stability between the states along the pathway under differing pH conditions. We further analyze these data to establish the connection between critical residues and important structural motifs which undergo reorganization during maturation. We go on to show how DNA packaging can induce spontaneous reorganization of the capsid during maturation.


Journal of Molecular Biology | 2008

Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.

Benedetta Alessandra Sampoli Benitez; Karunesh Arora; Lisa Balistreri; Tamar Schlick

DNA polymerase X (pol X) from the African swine fever virus is a 174-amino-acid repair polymerase that likely participates in a viral base excision repair mechanism, characterized by low fidelity. Surprisingly, pol Xs insertion rate of the G*G mispair is comparable to that of the four Watson-Crick base pairs. This behavior is in contrast with another X-family polymerase, DNA polymerase beta (pol beta), which inserts G*G mismatches poorly, and has higher DNA repair fidelity. Using molecular dynamics simulations, we previously provided support for an induced-fit mechanism for pol X in the presence of the correct incoming nucleotide. Here, we perform molecular dynamics simulations of pol X/DNA complexes with different incoming incorrect nucleotides in various orientations [C*C, A*G, and G*G (anti) and A*G and G*G (syn)] and compare the results to available kinetic data and prior modeling. Intriguingly, the simulations reveal that the G*G mispair with the incoming nucleotide in the syn configuration undergoes large-scale conformational changes similar to that observed in the presence of correct base pair (G*C). The base pairing in the G*G mispair is achieved via Hoogsteen hydrogen bonding with an overall geometry that is well poised for catalysis. Simulations for other mismatched base pairs show that an intermediate closed state is achieved for the A*G and G*G mispair with the incoming dGTP in anti conformation, while the protein remains near the open conformation for the C*C and the A*G syn mismatches. In addition, catalytic site geometry and base pairing at the nascent template-incoming nucleotide interaction reveal distortions and misalignments that range from moderate for A*G anti to worst for the C*C complex. These results agree well with kinetic data for pol X and provide a structural/dynamic basis to explain, at atomic level, the fidelity of this polymerase compared with other members of the X family. In particular, the more open and pliant active site of pol X, compared to pol beta, allows pol X to accommodate bulkier mismatches such as guanine opposite guanine, while the more structured and organized pol beta active site imposes higher discrimination, which results in higher fidelity. The possibility of syn conformers resonates with other low-fidelity enzymes such as Dpo4 (from the Y family), which readily accommodate oxidative lesions.


Biophysical Journal | 2010

Hexameric Helicase Deconstructed: Interplay of Conformational Changes and Substrate Coupling

Kenji Yoshimoto; Karunesh Arora; Charles L. Brooks

Hexameric helicases are molecular motor proteins that utilize energy obtained from ATP hydrolysis to translocate along and/or unwind nucleic acids. In this study, we investigate the dynamic behavior of the Simian Virus 40 hexameric helicase bound to DNA by performing molecular dynamics simulations employing a coarse-grained model. Our results elucidate the two most important molecular features of the helicase motion. First, the attractive interactions between the DNA-binding domain of the helicase and the DNA backbone are essential for the helicase to exhibit a unidirectional motion along the DNA strand. Second, the sequence of ATP binding at multiple binding pockets affects the helicase motion. Specifically, concerted ATP binding does not generate a unidirectional motion of the helicase. It is only when the binding of ATP occurs sequentially from one pocket to the next that the helicase moves unidirectionally along the DNA. Interestingly, in the reverse order of sequential ATP binding, the helicase also moves unidirectionally but in the opposite direction. These observations suggest that in nature ATP molecules must distinguish between different available ATP binding pockets of the hexameric helicase in order to function efficiently. To this end, simulations reveal that the binding of ATP in one pocket induces an opening of the next ATP-binding pocket and such an asymmetric deformation may coordinate the sequential ATP binding in a unidirectional manner. Overall, these findings may provide clues toward understanding the mechanism of substrate translocation in other motor proteins.


Journal of the American Chemical Society | 2013

Deconstructing activation events in rhodopsin.

Elena N. Laricheva; Karunesh Arora; Jennifer L. Knight; Charles L. Brooks

Activation of class-A G-protein-coupled receptors (GPCRs) involves large-scale reorganization of the H3/H6 interhelical network. In rhodopsin (Rh), this process is coupled to a change in the protonation state of a key residue, E134, whose exact role in activation is not well understood. Capturing this millisecond pH-dependent process is a well-appreciated challenge. We have developed a scheme combining the harmonic Fourier beads (HFB) method and constant-pH molecular dynamics with pH-based replica exchange (pH-REX) to gain insight into the structural changes that occur along the activation pathway as a function of the protonation state of E134. Our results indicate that E134 is protonated as a consequence of tilting of H6 by ca. 4.0° with respect to its initial position and simultaneous rotation by ca. 23° along its principal axis. The movement of H6 is associated with breakage of the E247-R135 and R135-E134 salt bridges and concomitant release of the E134 side chain, which results in an increase in its pKa value above physiological pH. An increase in the hydrophobicity of the environment surrounding E134 leads to further tilting and rotation of H6 and upshift of the E134 pKa. Such atomic-level information, which is not accessible through experiments, refines the earlier proposed sequential model of Rh activation (see: Zaitseva, E.; et al. Sequential Rearrangement of Interhelical Networks Upon Rhodopsin Activation in Membranes: The Meta IIa Conformational Substate . J. Am. Chem. Soc. 2010, 132, 4815) and argues that the E134 protonation switch is both a cause and a consequence of the H6 motion.

Collaboration


Dive into the Karunesh Arora's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel H. Wilson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William A. Beard

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eric R. May

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Jasmina Bogdanovic

Marymount Manhattan College

View shared research outputs
Top Co-Authors

Avatar

Lisa Balistreri

Marymount Manhattan College

View shared research outputs
Top Co-Authors

Avatar

C. Robert Matthews

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge