Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karuppaiyah Selvendiran is active.

Publication


Featured researches published by Karuppaiyah Selvendiran.


Cancer Biology & Therapy | 2007

Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating akt and p38 mAPK

Nathan M. Weir; Karuppaiyah Selvendiran; Vijay Kumar Kutala; Liyue Tong; Shilpa Vishwanath; Murugesan V. S. Rajaram; Susheela Tridandapani; Shrikant Anant; Periannan Kuppusamy

Curcumin, a major active component of turmeric, is known to induce apoptosis in several types of cancer cells, but little is known about its activity in chemoresistant cells. Hence, the aim of the present study was to investigate the anticancer properties of curcumin in cisplatin-resistant human ovarian cancer cells in vitro. The results indicated that curcumin inhibited the proliferation of both cisplatin-resistant (CR) and sensitive (CS) human ovarian cancer cells almost equally. Enhanced superoxide generation was observed in both CR and CS cells treated with curcumin. Curcumin induced G2/M phase cell-cycle arrest in CR cells by enhancing the p53 phosphorylation and apoptosis through the activation of caspase-3 followed by PARP degradation. Curcumin also inhibited the phosphorylation of Akt while the phosphorylation of p38 MAPK was enhanced. In summary, our results showed that curcumin inhibits the proliferation of cisplatin-resistant ovarian cancer cells through the induction of superoxide generation, G2/M arrest, and apoptosis.


Cancer Research | 2006

Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids.

Karuppaiyah Selvendiran; Hironori Koga; Takato Ueno; Takafumi Yoshida; Michiko Maeyama; Takuji Torimura; Hirohisa Yano; Masamichi Kojiro; Michio Sata

In this study, we have investigated the underlying molecular mechanism for the potent proapoptotic effect of luteolin on human hepatoma cells both in vitro and in vivo, focusing on the signal transducer and activator of transcription 3 (STAT3)/Fas signaling. A clear apoptosis was found in the luteolin-treated HLF hepatoma cells in a time- and dosage-dependent manner. In concert with the caspase-8 activation by luteolin, an enhanced expression in functional Fas/CD95 was identified. Consistent with the increased Fas/CD95 expression, a drastic decrease in the Tyr(705) phosphorylation of STAT3, a known negative regulator of Fas/CD95 transcription, was found within 20 minutes in the luteolin-treated cells, leading to down-regulation in the target gene products of STAT3, such as cyclin D1, survivin, Bcl-xL, and vascular endothelial growth factor. Of interest, the rapid down-regulation in STAT3 was consistent with an accelerated ubiquitin-dependent degradation in the Tyr(705)-phosphorylated STAT3, but not the Ser(727)-phosphorylated one, another regulator of STAT3 activity. The expression level of Ser(727)-phosphorylated STAT3 was gradually decreased by the luteolin treatment, followed by a fast and clear down-regulation in the active forms of CDK5, which can phosphorylate STAT3 at Ser(727). An overexpression in STAT3 led to resistance to luteolin, suggesting that STAT3 was a critical target of luteolin. In nude mice with xenografted tumors using HAK-1B hepatoma cells, luteolin significantly inhibited the growth of the tumors in a dosage-dependent manner. These data suggested that luteolin targeted STAT3 through dual pathways-the ubiquitin-dependent degradation in Tyr(705)-phosphorylated STAT3 and the gradual down-regulation in Ser(727)-phosphorylated STAT3 through inactivation of CDK5, thereby triggering apoptosis via up-regulation in Fas/CD95.


American Journal of Physiology-cell Physiology | 2010

Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells

Simi M. Chacko; Shabnam Ahmed; Karuppaiyah Selvendiran; M. Lakshmi Kuppusamy; Mahmood Khan; Periannan Kuppusamy

Stem cells transplanted to the ischemic myocardium usually encounter massive cell death within a few days of therapy. Hypoxic preconditioning (HPC) is currently employed as a strategy to prepare stem cells for increased survival and engraftment in the heart. However, HPC of stem cells has provided varying results, supposedly due to the differences in the oxygen concentration, duration of exposure, and passage conditions. In the present study, we determined the effect of HPC on rat mesenchymal stem cells (MSCs) exposed to 0.5% oxygen concentration for 24, 48, or 72 h. We evaluated the expression of prosurvival, proangiogenic, and functional markers such as hypoxia-inducible factor-1α, VEGF, phosphorylated Akt, survivin, p21, cytochrome c, caspase-3, caspase-7, CXCR4, and c-Met. MSCs exposed to 24-h hypoxia showed reduced apoptosis on being subjected to severe hypoxic conditions. They also had significantly higher levels of prosurvival, proangiogenic, and prodifferentiation proteins when compared with longer exposure (72 h). Cells taken directly from the cryopreserved state did not respond effectively to the 24-h HPC as those that were cultured under normoxia before HPC. Cells cultured under normoxia before HPC showed decreased apoptosis, enhanced expression of connexin-43, cardiac myosin heavy chain, and CD31. The preconditioned cells were able to differentiate into the cardiovascular lineage. The results suggest that MSCs cultured under normoxia before 24-h HPC are in a state of optimal expression of prosurvival, proangiogenic, and functional proteins that may increase the survival and engraftment in the infarct heart. These results could provide further insights into optimal preparation of MSCs which would greatly influence the effectiveness of cell therapy in vivo.


Journal of Biological Chemistry | 2007

EF24 Induces G2/M Arrest and Apoptosis in Cisplatin-resistant Human Ovarian Cancer Cells by Increasing PTEN Expression

Karuppaiyah Selvendiran; Liyue Tong; Shilpa Vishwanath; Anna Bratasz; Nancy J. Trigg; Vijay Kumar Kutala; Kálmán Hideg; Periannan Kuppusamy

We report that EF24, a synthetic compound 3,5-bis(2-flurobenzylidene)piperidin-4-one, greatly inhibits cisplatin-resistant (CR) human ovarian cancer cell proliferation. The inhibitory effect of EF24 on cell proliferation is associated with G2/M phase cell cycle arrest and increased G2/M checkpoint protein (pp53, p53, and p21) levels. Within 24 h following treatment, EF24 induced apoptosis in CR cells. The apoptosis was partially blocked by the general caspase inhibitor z-VAD. Within 12 h, EF24 induced a membranous FasL expression, consistent with a substantial decrease in the Ser473 and Thr308 phosphorylation of Akt, a known negative regulator of FasL transcription. Also, EF24 activated the phosphorylated PTEN and marginally up-regulated total PTEN expression through the inhibition of ubiquitin-mediated PTEN degradation. Suppression of PTEN expression with siRNA significantly reduced the p53 and p21 levels and activated Akt phosphorylation at Ser473 and Thr308, resulting in decreased apoptosis and increased cell survival. On the other hand, overexpression of PTEN markedly induced apoptosis. Our results clearly suggested that EF24 induced significant increase in PTEN expression. The up-regulation of PTEN inhibited Akt and MDM2, which enhanced the level of p53, thereby inducing G2/M arrest and apoptosis. Therefore, EF24 appears to have a potential therapeutic role in human ovarian cancer through the activation of PTEN.


International Journal of Cancer | 2009

Hypoxia induces chemoresistance in ovarian cancer cells by activation of signal transducer and activator of transcription 3

Karuppaiyah Selvendiran; Anna Bratasz; M. Lakshmi Kuppusamy; Mia Tazi; Brian K. Rivera; Periannan Kuppusamy

Signal transducer and activator of transcription 3 (STAT3) is activated in a variety of human cancers, including ovarian cancer. The molecular mechanism by which the STAT3 is activated in cancer cells is poorly understood. We observed that human ovarian xenograft tumors (A2780) in mice were severely hypoxic (pO2 ∼ 2 mmHg). We further observed that hypoxic exposure significantly increased the phosphorylation of STAT3 (pSTAT3) at the Tyr705 residue in A2780 cell line. The pSTAT3 (Tyr705) level was highly dependent on cellular oxygenation levels, with a significant increase at <2% O2, and without any change in the pSTAT3 (Ser727) or total STAT3 levels. The pSTAT3 (Tyr705) elevation following hypoxic exposure could be reversed within 12 hr after returning the cells to normoxia. The increased level of pSTAT3 was partly mediated by increased levels of reactive oxygen species generation in the hypoxic cancer cells. Conventional chemotherapeutic drugs cisplatin and taxol were far less effective in eliminating the hypoxic ovarian cancer cells suggesting a role for pSTAT3 in cellular resistance to chemotherapy. Inhibition of STAT3 by AG490 followed by treatment with cisplatin or taxol resulted in a significant increase in apoptosis suggesting that hypoxia‐induced STAT3 activation is responsible for chemoresistance. The results have important clinical implications for the treatment of hypoxic ovarian tumors using STAT3‐specific inhibitors.


Journal of Medicinal Chemistry | 2011

Synthesis of N-substituted 3,5-bis(arylidene)-4-piperidones with high antitumor and antioxidant activity.

Tamás Kálai; M. Lakshmi Kuppusamy; Mária Balog; Karuppaiyah Selvendiran; Brian K. Rivera; Periannan Kuppusamy; Kálmán Hideg

A series of 3,5-bis(arylidene)-4-piperidone (DAP) compounds are considered as synthetic analogues of curcumin for anticancer properties. We performed structure-activity relationship studies by synthesizing a number of DAPs N-alkylated or acylated with nitroxides or their amine precursors as potent antioxidant moieties. Both subtituents on arylidene rings and on piperidone nitrogen (five- or six-membered, 2- or 3-substituted or 3,4-disubstituted isoindoline nitroxides) were varied. The anticancer efficacy of the new DAP compounds was tested by measuring their cytotoxicity to cancer cell lines A2780 and MCF-7 and to the H9c2 cell line. The results showed that all DAP compounds induced a significant loss of cell viability in the human cancer cell lines tested; however, only pyrroline appended nitroxides (5c (Selvendiran, K.; Tong, L.; Bratasz, A.; Kuppusamy, L. M.; Ahmed, S.; Ravi, Y.; Trigg, N. J.; Rivera, B. K.; Kálai, T.; Hideg, K.; Kuppusamy, P. Mol. Cancer Ther. 2010, 9, 1169-1179), 5e, 7, 9) showed limited toxicity toward noncancerous cell lines. Computer docking simulations support the biological activity tested. These results suggest that antioxidant-conjugated DAPs will be useful as a safe and effective anticancer agent for cancer therapy.


Molecular Cancer Therapeutics | 2010

Anticancer Efficacy of a Difluorodiarylidenyl Piperidone (HO-3867) in Human Ovarian Cancer Cells and Tumor Xenografts

Karuppaiyah Selvendiran; Liyue Tong; Anna Bratasz; M. Lakshmi Kuppusamy; Shabnam Ahmed; Yazhini Ravi; Nancy J. Trigg; Brian K. Rivera; Tamás Kálai; Kálmán Hideg; Periannan Kuppusamy

The purpose of this study was to evaluate the anticancer potency and mechanism of a novel difluorodiarylidenyl piperidone (H-4073) and its N-hydroxypyrroline modification (HO-3867) in human ovarian cancer. Studies were done using established human ovarian cancer cell lines (A2870, A2780cDDP, OV-4, SKOV3, PA-1, and OVCAR3) as well as in a murine xenograft tumor (A2780) model. Both compounds were comparably and significantly cytotoxic to A2780 cells. However, HO-3867 showed a preferential toxicity toward ovarian cancer cells while sparing healthy cells. HO-3867 induced G2-M cell cycle arrest in A2780 cells by modulating cell cycle regulatory molecules p53, p21, p27, cyclin-dependent kinase 2, and cyclin, and promoted apoptosis by caspase-8 and caspase-3 activation. It also caused an increase in the expression of functional Fas/CD95 and decreases in signal transducers and activators of transcription 3 (STAT3; Tyr705) and JAK1 phosphorylation. There was a significant reduction in STAT3 downstream target protein levels including Bcl-xL, Bcl-2, survivin, and vascular endothelial growth factor, suggesting that HO-3867 exposure disrupted the JAK/STAT3 signaling pathway. In addition, HO-3867 significantly inhibited the growth of the ovarian xenografted tumors in a dosage-dependent manner without any apparent toxicity. Western blot analysis of the xenograft tumor tissues showed that HO-3867 inhibited pSTAT3 (Tyr705 and Ser727) and JAK1 and increased apoptotic markers cleaved caspase-3 and poly ADP ribose polymerase. HO-3867 exhibited significant cytotoxicity toward ovarian cancer cells by inhibition of the JAK/STAT3 signaling pathway. The study suggested that HO-3867 may be useful as a safe and effective anticancer agent for ovarian cancer therapy. Mol Cancer Ther; 9(5); 1169–79. ©2010 AACR.


Molecular Cancer Research | 2010

HO-3867, a synthetic compound, inhibits the migration and invasion of ovarian carcinoma cells through downregulation of fatty acid synthase and focal adhesion kinase.

Karuppaiyah Selvendiran; Shabnam Ahmed; Alex Dayton; Yazhini Ravi; M. Lakshmi Kuppusamy; Anna Bratasz; Brian K. Rivera; Tamás Kálai; Kálmán Hideg; Periannan Kuppusamy

Fatty acid synthase (FAS) and focal adhesion kinase (FAK), which are overexpressed in a variety of human epithelial tumors, play a key role in the migration and invasion of cancer cells. Hence, strategies targeted at inhibiting the FAS/FAK proteins may have therapeutic potential for cancer treatment. The goal of the present study was to determine the effect of HO-3867, a synthetic compound, on the migratory ability of ovarian cancer cells and to understand the mechanistic pathways including the involvement of FAS, FAK, and associated signaling proteins. The study was done using two established human ovarian cancer cell lines, A2780 and SKOV3. Incubation with 10 μmol/L HO-3867 for 24 hours significantly inhibited the native as well as the vascular endothelial growth factor (VEGF)–mediated migration and invasion of the cells. HO-3867 significantly attenuated FAS and FAK protein levels apparently through accelerated ubiquitin-dependent degradation, as shown by a clear downregulation of isopeptidase USP2a. Exposure of cells to HO-3867 also significantly inhibited FAS activity and mRNA levels and a number of downstream proteins, including phospho-extracellular signal–regulated kinase 1/2, phospho-human epidermal growth factor receptor 1, sterol regulatory element binding protein 1, VEGF, and matrix metalloproteinase 2. Western blot and immunohistochemical analyses of A2780 xenograft tumors in mice treated with HO-3867 showed significant reduction in FAS, FAK, VEGF, and downstream protein levels when compared with the untreated control. Collectively, the results showed that HO-3867 suppressed the migration and invasion of ovarian cancer cells by inhibiting the expression or activity of FAS and FAK proteins. The study suggests that molecular targeting of FAS and FAK by HO-3867 may be a potential strategy for ovarian cancer therapy. Mol Cancer Res; 8(9); 1188–97. ©2010 AACR.


Cell Cycle | 2008

NCX-4016, a nitro-derivative of aspirin, inhibits EGFR and STAT3 signaling and modulates Bcl-2 proteins in cisplatin-resistant human ovarian cancer cells and xenografts

Karuppaiyah Selvendiran; Anna Bratasz; Liyue Tong; Louis J. Ignarro; Periannan Kuppusamy

We have previously reported the inhibitory effect of NCX-4016, a nitro derivative of aspirin, on the proliferation of cisplatin-resistant human ovarian cancer cells, in vitro (Bratasz et al., Proc Natl Acad Sci USA 2006; 103:3914-9). In this report we present the results of our study on the mechanistic aspects of drug action including the molecular and signaling pathways involved in an in vitro cell line, as well as in a murine tumor xenograft. We report, for the first time, that NCX-4016 significantly inhibited the growth of cisplatin-resistant human ovarian cancer xenografts in mice. We observed that the inhibitory effect of NCX-4016 on cell proliferation was associated with G1 phase cell-cycle arrest with increased activity of p53, p21 and p27 proteins. NCX-4016 modulated the Bcl-2 family of proteins, and induced apoptosis by activating Bax and cytochrome c release in a time-dependent manner. In addition, NCX-4016 selectively down-regulated the phosphorylated forms of EGFR (Tyr845, Tyr992), pAkt (Ser473, Thr305), and STAT3 (Tyr705, Ser727), in vitro and in vivo. Taken together, the results clearly suggested that NCX-4016 causes significant induction of cell-cycle arrest and apoptosis in cisplatin-resistant human ovarian cancer cells via down-regulation of EGFR/PI3K/STAT3 signaling and modulation of Bcl-2 family proteins. Thus, NCX-4016 appears to be a potential therapeutic agent for treating recurrent human ovarian carcinoma.


Cancer Biology & Therapy | 2011

HO-3867, a curcumin analog, sensitizes cisplatin-resistant ovarian carcinoma, leading to therapeutic synergy through STAT3 inhibition

Karuppaiyah Selvendiran; Shabnam Ahmed; Alex Dayton; M. Lakshmi Kuppusamy; Brian K. Rivera; Tamás Kálai; Kálmán Hideg; Periannan Kuppusamy

Cisplatin resistance is a major obstacle in the treatment of ovarian cancer. Drug combinations with synergistic or complementary functions are a promising strategy to overcome this issue. We studied the anticancer efficacy of a novel compound, HO-3867, used in combination with cisplatin against chemotherapy-resistant ovarian cancer. A2780R cells, a cisplatin-resistant human ovarian cancer cell line, were exposed to 1, 5, or 10 uM of HO-3867 alone or in combination with cisplatin (10 ug/ml) for 24 hours. Cell viability (MTT), proliferation (BrdU), cell-cycle analysis (FACS), and protein expression (western blot) were used for in vitro studies. STAT3 overexpression was performed using transfected STAT3 cDNA. In vivo studies used cisplatin-resistant xenograft tumors grown in nude mice and treated with 100-ppm HO-3867 and weekly injections of 4-mg/kg cisplatin. HO-3867/cisplatin combination treatment significantly inhibited cisplatin-resistant cell proliferation in a concentration-dependent manner. The inhibition was associated with increased expression of p53 and p21, and decreased expression of cdk5 and cyclin D1. Apoptosis was induced by activation of Bax, cytochrome c release, and stimulated cleavage of caspase-9, caspase-3, and PARP. Overexpression of STAT3 decreased the HO-3867-induced apoptosis. The combination treatment significantly inhibited the growth of cisplatin-resistant xenograft tumors with significant downregulation of pSTAT3, and without apparent toxicity to healthy tissues. The combination treatment exhibited synergistic anticancer efficacy, which appears largely due to HO-3867-induced downregulation of pSTAT3. The results, combined with the previously-reported safety features of HO-3867, suggest the potential use of this compound as a safe and effective adjuvant for the treatment of ovarian cancer.

Collaboration


Dive into the Karuppaiyah Selvendiran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge