Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kashmira Shah is active.

Publication


Featured researches published by Kashmira Shah.


Journal of Experimental Medicine | 2005

11β-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice

Anne Hermanowski-Vosatka; James M. Balkovec; Kang Cheng; Howard Y. Chen; Melba Hernandez; Gloria C. Koo; Cheryl B. Le Grand; Zhihua Li; Joseph M. Metzger; Steven S. Mundt; Heather Noonan; Christian N. Nunes; Steven H. Olson; Bill Pikounis; Ning Ren; Nancy Robertson; James M. Schaeffer; Kashmira Shah; Martin S. Springer; Alison M. Strack; Matthias Strowski; Kenneth K. Wu; Tsuei-Ju Wu; Jianying Xiao; Bei B. Zhang; Samuel D. Wright; Rolf Thieringer

The enzyme 11β–hydroxysteroid dehydrogenase (HSD) type 1 converts inactive cortisone into active cortisol in cells, thereby raising the effective glucocorticoid (GC) tone above serum levels. We report that pharmacologic inhibition of 11β-HSD1 has a therapeutic effect in mouse models of metabolic syndrome. Administration of a selective, potent 11β-HSD1 inhibitor lowered body weight, insulin, fasting glucose, triglycerides, and cholesterol in diet-induced obese mice and lowered fasting glucose, insulin, glucagon, triglycerides, and free fatty acids, as well as improved glucose tolerance, in a mouse model of type 2 diabetes. Most importantly, inhibition of 11β-HSD1 slowed plaque progression in a murine model of atherosclerosis, the key clinical sequela of metabolic syndrome. Mice with a targeted deletion of apolipoprotein E exhibited 84% less accumulation of aortic total cholesterol, as well as lower serum cholesterol and triglycerides, when treated with an 11β-HSD1 inhibitor. These data provide the first evidence that pharmacologic inhibition of intracellular GC activation can effectively treat atherosclerosis, the key clinical consequence of metabolic syndrome, in addition to its salutary effect on multiple aspects of the metabolic syndrome itself.


Journal of Clinical Investigation | 2010

Identification and validation of genes affecting aortic lesions in mice

Xia Yang; Larry Peterson; Rolf Thieringer; Joshua L. Deignan; Xuping Wang; Jun Zhu; Susanna Wang; Hua Zhong; Serguei Stepaniants; John Beaulaurier; I-Ming Wang; Ray Rosa; Anne-Marie Cumiskey; Jane Ming-Juan Luo; Qi Luo; Kashmira Shah; Jianying Xiao; David C. Nickle; Andrew Plump; Eric E. Schadt; Aldons J. Lusis; Pek Yee Lum

Atherosclerosis represents the most significant risk factor for coronary artery disease (CAD), the leading cause of death in developed countries. To better understand the pathogenesis of atherosclerosis, we applied a likeli-hood-based model selection method to infer gene-disease causality relationships for the aortic lesion trait in a segregating mouse population demonstrating a spectrum of susceptibility to developing atherosclerotic lesions. We identified 292 genes that tested causal for aortic lesions from liver and adipose tissues of these mice, and we experimentally validated one of these candidate causal genes, complement component 3a receptor 1 (C3ar1), using a knockout mouse model. We also found that genes identified by this method overlapped with genes progressively regulated in the aortic arches of 2 mouse models of atherosclerosis during atherosclerotic lesion development. By comparing our gene set with findings from public human genome-wide association studies (GWAS) of CAD and related traits, we found that 5 genes identified by our study overlapped with published studies in humans in which they were identified as risk factors for multiple atherosclerosis-related pathologies, including myocardial infarction, serum uric acid levels, mean platelet volume, aortic root size, and heart failure. Candidate causal genes were also found to be enriched with CAD risk polymorphisms identified by the Wellcome Trust Case Control Consortium (WTCCC). Our findings therefore validate the ability of causality testing procedures to provide insights into the mechanisms underlying atherosclerosis development.


Cellular Immunology | 2003

Immunosuppressive effects of a Kv1.3 inhibitor.

Kashmira Shah; J.Tom Blake; Christopher Huang; Paul Fischer; Gloria C. Koo

The voltage gated potassium channel (Kv1.3) has been shown to play a role in immune responsiveness. Blockade of the channel led to diminution of T cell activation and delayed type hypersensitivity. Previous in vitro studies of the blockade were focused on T cell activation and proliferation. In this study we examined other T and monocytic cell mediated events to glean the extent of the immunosuppressive effects of a Kv1.3 specific inhibitor, Margatoxin (MgTX). We found that MgTX inhibited the intracellular production of Th-1 as well as Th-2 cytokines. MgTX can also inhibit IL-2 production and proliferation of T cells upon stimulation with anti-CD3 and VCAM-1. Furthermore, a redirected cytolytic activity was also inhibited by MgTX. However, MgTX did not inhibit generation of CTL to EBV transformed lymphoma cells or antibody-dependent cellular cytolysis mediated by monocytes. It appears that a Kv1.3 blockade does not affect all immune responses, particularly those of innate immunity.


Bioorganic & Medicinal Chemistry Letters | 2003

Benzamide derivatives as blockers of Kv1.3 ion channel

Shouwu Miao; Jianming Bao; Maria L. Garcia; Joung L. Goulet; Xingfang J. Hong; Gregory J. Kaczorowski; Frank Kayser; Gloria C. Koo; Andrew Kotliar; William A. Schmalhofer; Kashmira Shah; Peter J. Sinclair; Robert S. Slaughter; Marty S. Springer; Mary Jo Staruch; Nancy N. Tsou; Frederick Wong; William H. Parsons; Kathleen M. Rupprecht

The voltage-gated potassium channel, Kv1.3, is present in human T-lymphocytes. Blockade of Kv1.3 results in T-cell depolarization, inhibition of T-cell activation, and attenuation of immune responses in vivo. A class of benzamide Kv1.3 channel inhibitors has been identified. The structure-activity relationship within this class of compounds in two functional assays, Rb_Kv and T-cell proliferation, is presented. In in vitro assays, trans isomers display moderate selectivity for binding to Kv1.3 over other Kv1.x channels present in human brain.


Bioorganic & Medicinal Chemistry Letters | 2008

Phenylcyclobutyl triazoles as selective inhibitors of 11β-hydroxysteroid dehydrogenase type I

Yuping Zhu; Steven H. Olson; Donald W. Graham; Gool F. Patel; Anne Hermanowski-Vosatka; Steven S. Mundt; Kashmira Shah; Marty S. Springer; Rolf Thieringer; Samuel D. Wright; Jianying Xiao; Hratch J. Zokian; Jasminka Dragovic; James M. Balkovec

3-(Phenylcyclobutyl)-1,2,4-triazoles were identified as selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). These were active both in vitro and in an in vivo mouse pharmacodynamic (PD) model. Fluorine substitution of the cyclobutane ring improved the pharmacokinetic profile significantly. The synthesis and structure-activity relationships are presented.


Physiological Genomics | 2013

11β-HSD1 inhibition reduces atherosclerosis in mice by altering proinflammatory gene expression in the vasculature

Mingjuan Jane Luo; Rolf Thieringer; Martin S. Springer; Samuel D. Wright; Anne Hermanowski-Vosatka; Andrew S. Plump; James M. Balkovec; Kang Cheng; Gloria J.-F. Ding; Douglas W. Kawka; Gloria C. Koo; Cheryl B. Le Grand; Qi Luo; Milana Maletic; Lorraine Malkowitz; Kashmira Shah; Irwin I. Singer; Sherman T. Waddell; Kenneth K. Wu; Jeffrey Yuan; Jun Zhu; Serguei Stepaniants; Xia Yang; Pek Yee Lum; I-Ming Wang

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is implicated in the etiology of metabolic syndrome. We previously showed that pharmacological inhibition of 11β-HSD1 ameliorated multiple facets of metabolic syndrome and attenuated atherosclerosis in ApoE-/- mice. However, the molecular mechanism underlying the atheroprotective effect was not clear. In this study, we tested whether and how 11β-HSD1 inhibition affects vascular inflammation, a major culprit for atherosclerosis and its associated complications. ApoE-/- mice were treated with an 11β-HSD1 inhibitor for various periods of time. Plasma lipids and aortic cholesterol accumulation were quantified. Several microarray studies were carried out to examine the effect of 11β-HSD1 inhibition on gene expression in atherosclerotic tissues. Our data suggest 11β-HSD1 inhibition can directly modulate atherosclerotic plaques and attenuate atherosclerosis independently of lipid lowering effects. We identified immune response genes as the category of mRNA most significantly suppressed by 11β-HSD1 inhibition. This anti-inflammatory effect was further confirmed in plaque macrophages and smooth muscle cells procured by laser capture microdissection. These findings in the vascular wall were corroborated by reduction in circulating MCP1 levels after 11β-HSD1 inhibition. Taken together, our data suggest 11β-HSD1 inhibition regulates proinflammatory gene expression in atherosclerotic tissues of ApoE-/- mice, and this effect may contribute to the attenuation of atherosclerosis in these animals.


Bioorganic & Medicinal Chemistry Letters | 2008

4-Methyl-5-phenyl triazoles as selective inhibitors of 11β-hydroxysteroid dehydrogenase type I

Yuping Zhu; Steven H. Olson; Anne Hermanowski-Vosatka; Steven S. Mundt; Kashmira Shah; Marty S. Springer; Rolf Thieringer; Samuel D. Wright; Jianying Xiao; Hratch J. Zokian; James M. Balkovec

4-Methyl-5-phenyl-(1,2,4)-triazoles were identified as selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). They were active in vitro and in an in vivo mouse pharmacodynamic (PD) model. The synthesis and structure activity relationships are presented.


Bioorganic & Medicinal Chemistry Letters | 2013

Evaluation of selective inhibitors of 11β-HSD1 for the treatment of hypertension

David R. Bauman; Alan Whitehead; Lisa Contino; Jisong Cui; Margarita Garcia-Calvo; Xin Gu; Nancy J. Kevin; Xiuying Ma; Lee-Yuh Pai; Kashmira Shah; Xiaolan Shen; Sloan Stribling; Hratch J. Zokian; Joe Metzger; Diane Shevell; Sherman T. Waddell

In an effort to understand the origin of blood-pressure lowering effects observed in recent clinical trials with 11β-HSD1 inhibitors, we examined a set of 11β-HSD1 inhibitors in a series of relevant in vitro and in vivo assays. Select 11β-HSD1 inhibitors reduced blood pressure in our preclinical models but most or all of the blood pressure lowering may be mediated by a 11β-HSD1 independent pathway.


Bioorganic & Medicinal Chemistry Letters | 2003

N-isonicotinoyl-(L)-4-aminophenylalanine derivatives as tight binding VLA-4 antagonists.

George Doherty; Ginger X. Yang; Edite Borges; Sharon Tong; Ermengilda McCauley; Kelly M. Treonz; Gail Van Riper; Stephen Pacholok; Qian Si; Gloria C. Koo; Kashmira Shah; Richard A. Mumford; William K. Hagmann

A series of isonicotinoyl-(L)-aminophenylalanine derivatives was prepared and evaluated as VLA-4 antagonists. These compounds exhibit subnanomolar binding affinity to VLA-4 and significant off-rates. The interplay between off-rate, protein binding and pharmacokinetics is discussed.


ACS Medicinal Chemistry Letters | 2015

Discovery of a Potent and Selective ROMK Inhibitor with Pharmacokinetic Properties Suitable for Preclinical Evaluation

Shawn P. Walsh; Aurash Shahripour; Haifeng Tang; Nardos Teumelsan; Jessica Frie; Yuping Zhu; Birgit T. Priest; Andrew M. Swensen; Jessica Liu; Michael Margulis; Richard Visconti; Adam B. Weinglass; John P. Felix; Richard M. Brochu; Timothy Bailey; Brande Thomas-Fowlkes; Magdalena Alonso-Galicia; Xiaoyan Zhou; Lee-Yuh Pai; Aaron Corona; Caryn Hampton; Melba Hernandez; Ross Bentley; Jing Chen; Kashmira Shah; Joseph M. Metzger; Michael J. Forrest; Karen Owens; Vincent Tong; Sookhee Ha

A new subseries of ROMK inhibitors exemplified by 28 has been developed from the initial screening hit 1. The excellent selectivity for ROMK inhibition over related ion channels and pharmacokinetic properties across preclinical species support further preclinical evaluation of 28 as a new mechanism diuretic. Robust pharmacodynamic effects in both SD rats and dogs have been demonstrated.

Researchain Logo
Decentralizing Knowledge