Kasia Piwosz
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kasia Piwosz.
Environmental Microbiology | 2010
Kasia Piwosz; Jakob Pernthaler
We investigated the temporal dynamics and trophic role of different nanoflagellates in surface waters of the Gulf of Gdańsk (Baltic Sea) between April and October 2007. Two 18S rRNA gene clone libraries were constructed from samples collected in spring and summer, and weekly changes in the abundances of five phylogenetic groups were studied by fluorescence in situ hybridization with newly designed probes. Stramenopiles affiliated with MAST-6 and Pedinellales were most numerous in spring but rare in summer. Both groups formed short-lived blooms during a sudden drop of salinity due to riverine influx (from 7.1 to 6.2 practical salinity units). The analysis of food vacuole content suggested that MAST-6 nanoflagellates were herbivorous, whereas bacterivory was found both in plastidic and aplastidic pedinellid populations. Members of an uncultured lineage of aplastidic, bacterivorous cercozoans distantly related to Ebria tripartita were more abundant in summer when water temperatures exceeded 17 degrees C. Multicellular trophonts and/or free-living single cell stages of two lineages of Group 1 parasitic Syndiniales (alveolates) were present in spring and early summer. One of these alveolate populations repeatedly peaked before and after the freshwater influx, but was conspicuously absent throughout the period of decreased salinity. Our results indicate that nanoflagellate populations in coastal surface waters may form short-lived blooms that can only be detected by high-frequency sampling, and that may be related both to seasonal development and to sporadic (e.g. mixing) events. In view of their trophic diversity we moreover suggest that nanoflagellates in eutrophic coastal waters should not be regarded as a single functional unit.
The ISME Journal | 2013
Kasia Piwosz; Józef Wiktor; Andrea Niemi; Agnieszka Tatarek; Christine Michel
Sea ice, a characteristic feature of polar waters, is home to diverse microbial communities. Sea-ice picoeukaryotes (unicellular eukaryotes with cell size <3 μm) have received little attention compared with diatoms that dominate the spring bloom in Arctic first-year sea ice. Here, we investigated the abundance of all picoeukaryotes, and of 11 groups (chlorophytes, cryptophytes, bolidophytes, haptophytes, Pavlovaphyceae, Phaeocystis spp., pedinellales, stramenopiles groups MAST-1, MAST-2 and MAST-6 and Syndiniales Group II) at 13 first-year sea-ice stations localized in Barrow Strait and in the vicinity of Cornwallis Island, Canadian Arctic Archipelago. We applied Catalyzed Reporter Deposition–Fluorescence In Situ Hybridization to identify selected groups at a single cell level. Pavlovaphyceae and stramenopiles from groups MAST-2 and MAST-6 were for the first time reported from sea ice. Total numbers of picoeukaryotes were significantly higher in the vicinity of Cornwallis Island than in Barrow Strait. Similar trend was observed for all the groups except for haptophytes. Chlorophytes and cryptophytes were the dominant plastidic, and MAST-2 most numerous aplastidic of all the groups investigated. Numbers of total picoeukaryotes, chlorophytes and MAST-2 stramenopiles were positively correlated with the thickness of snow cover. All studied algal and MAST groups fed on bacteria. Presence of picoeukaryotes from various trophic groups (mixotrophs, phagotrophic and parasitic heterotrophs) indicates the diverse ecological roles picoeukaryotes have in sea ice. Yet, >50% of total sea-ice picoeukaryote cells remained unidentified, highlighting the need for further study of functional and phylogenetic sea-ice diversity, to elucidate the risks posed by ongoing Arctic changes.
Polar Biology | 2013
Piotr Kuklinski; Jørgen Berge; Laurel McFadden; Katarzyna Dmoch; Marek Zajaczkowski; Henrik Nygård; Kasia Piwosz; Agnieszka Tatarek
The Arctic system is one of the regions most influenced by ongoing global climate change, but there are still critical gaps in our knowledge regarding a substantial number of biological processes. This is especially true for processes taking place during the Arctic winter but also for seasonal processes, such as the dynamics of intra-annual meroplankton occurrence. Here, we report on a 1-year study of meroplankton seasonal variability from a fjordic system in the Arctic Archipelago of Svalbard. The study combines an examination of phytoplankton, zooplankton, and hard bottom benthic settlement with measurements of environmental parameters (e.g., water temperature, particulate organic matter, and dissolved organic carbon). Samples were taken on a bi-weekly or monthly basis, and a total of 11 taxa representing six phyla of meroplankton were recorded over a 1-year period from January to December 2007. The occurrence of benthic larvae varied between the seasons, reaching a maximum in both abundance and taxon richness in late spring through early summer. Meroplanktonic larvae were absent in winter. However, settlement of benthic organisms was also recorded during the winter months (February and March), which indicates individual trade-offs related to timing of reproduction and competition. In addition, it suggests that these larvae are not relying on higher summer nutrient concentrations, but instead are dependent on alternative food sources. In parallel with meroplankton abundance, all other measured parameters, both biological (e.g., phyto- and zooplankton abundance and diversity) and physical (e.g., particulate organic matter), exhibited seasonal variability with peaks in the warmer months of the year.
Environmental Microbiology | 2015
Kasia Piwosz; Katarzyna Spich; Joanna Całkiewicz; Agata Weydmann; A. M. Kubiszyn; Józef Wiktor
Phytoflagellates <10 μm substantially contribute to the abundance, biomass and primary production in polar waters, but information on the distribution of specific groups is scarce. We applied catalysed reporter deposition-fluorescence in situ hybridization to investigate the distribution of total phytoflagellates and of eight specific groups along a 100 km transect west off Kongsfjorden (Spitsbergen) from 29 to 31 July 2010. Phytoflagellates contributed to >75% of the depth-integrated abundance and biomass of total eukaryotes <10 μm at all stations. Their depth-integrated abundance and biomass decreased along the transect from 1.5 × 10(12) cells m(-2) (6.6 × 10(12) pgC m(-2) ) at the outermost station to 1.7 × 10(10) cells m(-2) (4.7 × 10(10) pgC m(-2) ) at the innermost station. Chlorophytes contributed to the total abundance of phytoflagellates with a range from 13% to 87% (0.7-30.5 × 10(3) cells ml(-1) ), and predominated in open waters. The contribution of haptophytes was < 1-38% (10-4500 cells ml(-1) ). The other groups represented <10%. The temperature and salinity positively correlated with the total abundance of phytoflagellates, chlorophytes, haptophytes, bolidophytes and pelagophytes. Cryptophytes, pedinellids and pavlovophytes were negatively associated with the nutrient concentrations. The community composition of phytoflagellates changed along the transect, which could have implications on food web dynamics and biogeochemical cycles between the open ocean environment and Kongsfjorden investigated here.
Environmental Microbiology Reports | 2017
Marcin Gołębiewski; Joanna Całkiewicz; Simon Creer; Kasia Piwosz
Most bacteria are found either in marine or fresh waters and transitions between the two habitats are rare, even though freshwater and marine bacteria co-occur in brackish habitats. Estuaries in brackish, tideless seas could be habitats where the transition of freshwater phylotypes to marine conditions occurs. We tested this hypothesis in the Gulf of Gdańsk (Baltic Sea) by comparing bacterial communities from different zones of the estuary, via pyrosequencing of 16S rRNA amplicons. We predicted the existence of a core microbiome (CM, a set of abundant OTUs present in all samples) comprising OTUs consisting of populations specific for particular zones of the estuary. The CMs for the entire studied period consisted of only eight OTUs, and this number was even lower for specific seasons: five in spring, two in summer, and one in autumn and winter. Six of the CM OTUs, and another 21 of the 50 most abundant OTUs consisted of zone-specific populations, plausibly representing micro-evolutionary forces. The presence of up to 15% of freshwater phylotypes from the Vistula River in the brackish Gulf of Gdańsk supported our hypothesis, but high dissimilarity between the bacterial communities suggested that freshwater-marine transitions are rare even in tideless estuaries in brackish seas.
Journal of Phycology | 2016
Kasia Piwosz; Janina Kownacka; Anetta Ameryk; Mariusz Zalewski; Jakob Pernthaler
Cryptomonadales have acquired their plastids by secondary endosymbiosis. A novel clade—CRY1—has been discovered at the base of the Cryptomonadales tree, but it remains unknown whether it contains plastids. Cryptomonadales are also an important component of phytoplankton assemblages. However, they cannot be readily identified in fixed samples, and knowledge on dynamics and distribution of specific taxa is scarce. We investigated the phenology of the CRY1 lineage, three cryptomonadales clades and a species Proteomonas sulcata in a brackish lagoon of the Baltic Sea (salinity 0.3–3.9) using fluorescence in situ hybridization. A newly design probe revealed that specimens of the CRY1 lineage were aplastidic. This adds evidence against the chromalveolate hypothesis, and suggests that the evolution of cryptomonadales’ plastids might have been shorter than is currently assumed. The CRY1 lineage was the most abundant cryptomonad clade in the lagoon. All of the studied cryptomonads peaked in spring at the most freshwater station, except for P. sulcata that peaked in summer and autumn. Salinity and concentration of dissolved inorganic nitrogen most significantly affected their distribution and dynamics. Our findings contribute to the ecology and evolution of cryptomonads, and may advance understanding of evolutionary relationships within the eukaryotic tree of life.
PLOS ONE | 2011
Kasia Piwosz; Jakob Pernthaler
Free-living nano-sized flagellates are important bacterivores in aquatic habitats. However, some slightly larger forms can also be omnivorous, i.e., forage upon both bacterial and eukaryotic resources. This hitherto largely ignored feeding mode may have pronounced implications for the interpretation of experiments about protistan bacterivory. We followed the response of an uncultured group of omnivorous cercozoan nanoflagellates from the Novel Clade 2 (Cerc_BAL02) to experimental food web manipulation in samples from the Gulf of Gdańsk (Southern Baltic Sea). Seawater was either prefiltered through 5 µm filters to exclude larger predators of nanoflagellates (F-treatment), or prefiltered and subsequently 1∶10 diluted with sterile seawater (F+D-treatment) to stimulate the growth of both, flagellates and bacteria. Initially, Cerc_BAL02 were rapidly enriched under both conditions. They foraged on both, eukaryotic prey and bacteria, and were highly competitive at low concentrations of food. However, these omnivores were later only successful in the F+D treatment, where they eventually represented almost one fifth of all aplastidic nanoflagellates. By contrast, their numbers stagnated in the F-treatment, possibly due to top-down control by a concomitant bloom of other, unidentified flagellates. In analogy with observations about the enrichment of opportunistically growing bacteria in comparable experimental setups we suggest that the low numbers of omnivorous Cerc_Bal02 flagellates in waters of the Gulf of Gdańsk might also be related to their vulnerability to grazing pressure.
Environmental Microbiology | 2018
Kasia Piwosz; David Kaftan; Jason Dean; Jiří Šetlík; Michal Koblížek
Aerobic anoxygenic photosynthetic bacteria are an important component of marine microbial communities. They produce energy in light using bacteriochlorophyll a containing photosystems. This extra energy provides an advantage over purely heterotrophic bacteria. One of the most intensively studied AAP bacteria is Dinoroseobacter shibae, a member of the environmentally important Roseobacter clade. Light stimulates its growth and metabolism, but the effect of light intensity remains unclear. Here, we show that an increase in biomass along an irradiance gradient followed the exponential rise to the maximum curve, with saturation at about 300 µmol photons m-2 s-1 , without any inhibition at light intensities up to 600 µmol photons m-2 s-1 . The cells adapted to higher irradiance by reducing pigmentation and increasing the electron transfer rate. This additional energy allowed D. shibae to redirect the metabolism of organic carbon sources such as glucose, leucine, glutamate, acetate and pyruvate toward anabolism, resulting in a twofold increase of their assimilation rates. We provide equations that can be feasibly incorporated into the existing model of D. shibae metabolism to further advance our understanding of the role of photoheterotrophy in the ocean.
The ISME Journal | 2018
Kasia Piwosz; Tanja Shabarova; Jürgen Tomasch; Karel Šimek; Karel Kopejtka; Silke Kahl; Dietmar H. Pieper; Michal Koblížek
The growth rate is a fundamental characteristic of bacterial species, determining its contributions to the microbial community and carbon flow. High-throughput sequencing can reveal bacterial diversity, but its quantitative inaccuracy precludes estimation of abundances and growth rates from the read numbers. Here, we overcame this limitation by normalizing Illumina-derived amplicon reads using an internal standard: a constant amount of Escherichia coli cells added to samples just before biomass collection. This approach made it possible to reconstruct growth curves for 319 individual OTUs during the grazer-removal experiment conducted in a freshwater reservoir Římov. The high resolution data signalize significant functional heterogeneity inside the commonly investigated bacterial groups. For instance, many Actinobacterial phylotypes, a group considered to harbor slow-growing defense specialists, grew rapidly upon grazers’ removal, demonstrating their considerable importance in carbon flow through food webs, while most Verrucomicrobial phylotypes were particle associated. Such differences indicate distinct life strategies and roles in food webs of specific bacterial phylotypes and groups. The impact of grazers on the specific growth rate distributions supports the hypothesis that bacterivory reduces competition and allows existence of diverse bacterial communities. It suggests that the community changes were driven mainly by abundant, fast, or moderately growing, and not by rare fast growing, phylotypes. We believe amplicon read normalization using internal standard (ARNIS) can shed new light on in situ growth dynamics of both abundant and rare bacteria.
Polar Biology | 2009
Kasia Piwosz; Wojciech Walkusz; Ryszard Hapter; Piotr Wieczorek; Haakon Hop; Józef Wiktor