Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kasmintan A. Schrader is active.

Publication


Featured researches published by Kasmintan A. Schrader.


JAMA Oncology | 2015

Hereditary Diffuse Gastric Cancer Syndrome: CDH1 Mutations and Beyond

Samantha Hansford; Pardeep Kaurah; Hector Li-Chang; Michelle Woo; Janine Senz; Hugo Pinheiro; Kasmintan A. Schrader; David F. Schaeffer; Karey Shumansky; George Zogopoulos; Teresa Almeida Santos; Isabel Claro; Joana Carvalho; Cydney Nielsen; Sarah Padilla; Amy Lum; Aline Talhouk; Katie Baker-Lange; Sue Richardson; Ivy Lewis; Noralane M. Lindor; Erin Pennell; Andree MacMillan; Bridget A. Fernandez; G. Keller; Henry T. Lynch; Sohrab P. Shah; Parry Guilford; Steven Gallinger; Giovanni Corso

IMPORTANCE E-cadherin (CDH1) is a cancer predisposition gene mutated in families meeting clinically defined hereditary diffuse gastric cancer (HDGC). Reliable estimates of cancer risk and spectrum in germline mutation carriers are essential for management. For families without CDH1 mutations, genetic-based risk stratification has not been possible, resulting in limited clinical options. OBJECTIVES To derive accurate estimates of gastric and breast cancer risks in CDH1 mutation carriers and determine if germline mutations in other genes are associated with HDGC. DESIGN, SETTING, AND PARTICIPANTS Testing for CDH1 germline mutations was performed on 183 index cases meeting clinical criteria for HDGC. Penetrance was derived from 75 mutation-positive families from within this and other cohorts, comprising 3858 probands (353 with gastric cancer and 89 with breast cancer). Germline DNA from 144 HDGC probands lacking CDH1 mutations was screened using multiplexed targeted sequencing for 55 cancer-associated genes. MAIN OUTCOMES AND MEASURES Accurate estimates of gastric and breast cancer risks in CDH1 mutation carriers and the relative contribution of other cancer predisposition genes in familial gastric cancers. RESULTS Thirty-one distinct pathogenic CDH1 mutations (14 novel) were identified in 34 of 183 index cases (19%). By the age of 80 years, the cumulative incidence of gastric cancer was 70% (95% CI, 59%-80%) for males and 56% (95% CI, 44%-69%) for females, and the risk of breast cancer for females was 42% (95% CI, 23%-68%). In CDH1 mutation-negative index cases, candidate mutations were identified in 16 of 144 probands (11%), including mutations within genes of high and moderate penetrance: CTNNA1, BRCA2, STK11, SDHB, PRSS1, ATM, MSR1, and PALB2. CONCLUSIONS AND RELEVANCE This is the largest reported series of CDH1 mutation carriers, providing more precise estimates of age-associated risks of gastric and breast cancer that will improve counseling of unaffected carriers. In HDGC families lacking CDH1 mutations, testing of CTNNA1 and other tumor suppressor genes should be considered. Clinically defined HDGC families can harbor mutations in genes (ie, BRCA2) with different clinical ramifications from CDH1. Therefore, we propose that HDGC syndrome may be best defined by mutations in CDH1 and closely related genes, rather than through clinical criteria that capture families with heterogeneous susceptibility profiles.


Nature Genetics | 2013

A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia

Sohela Shah; Kasmintan A. Schrader; Esmé Waanders; Andrew E. Timms; Joseph Vijai; Cornelius Miething; Jeremy Wechsler; Jun Yang; James Hayes; Robert J. Klein; Jinghui Zhang; Lei Wei; Gang Wu; Michael Rusch; Panduka Nagahawatte; Jing Ma; Shann Ching Chen; Guangchun Song; Jinjun Cheng; Paul A. Meyers; Deepa Bhojwani; Suresh C. Jhanwar; P. Maslak; Martin Fleisher; Jason Littman; Lily Offit; Rohini Rau-Murthy; Megan Harlan Fleischut; Marina Corines; Rajmohan Murali

Somatic alterations of the lymphoid transcription factor gene PAX5 (also known as BSAP) are a hallmark of B cell precursor acute lymphoblastic leukemia (B-ALL), but inherited mutations of PAX5 have not previously been described. Here we report a new heterozygous germline variant, c.547G>A (p.Gly183Ser), affecting the octapeptide domain of PAX5 that was found to segregate with disease in two unrelated kindreds with autosomal dominant B-ALL. Leukemic cells from all affected individuals in both families exhibited 9p deletion, with loss of heterozygosity and retention of the mutant PAX5 allele at 9p13. Two additional sporadic ALL cases with 9p loss harbored somatic PAX5 substitutions affecting Gly183. Functional and gene expression analysis of the PAX5 mutation demonstrated that it had significantly reduced transcriptional activity. These data extend the role of PAX5 alterations in the pathogenesis of pre-B cell ALL and implicate PAX5 in a new syndrome of susceptibility to pre-B cell neoplasia.


Familial Cancer | 2008

Hereditary diffuse gastric cancer: association with lobular breast cancer.

Kasmintan A. Schrader; Serena Masciari; Niki Boyd; Sara Wiyrick; Pardeep Kaurah; Janine Senz; Wylie Burke; Henry T. Lynch; Judy Garber; David Huntsman

Hereditary diffuse gastric cancer (HDGC) has been shown to be caused by germline mutations in the gene CDH1 located at 16q22.1, which encodes the cell–cell adhesion molecule, E-cadherin. Not only does loss of expression of E-cadherin account for the morphologic differences between intestinal and diffuse gastric cancer (DGC) variants, but it also appears to lead to distinct cellular features which appear to be common amongst related cancers that have been seen in the syndrome. As in most hereditary cancer syndromes, multiple organ sites may be commonly affected by cancer, in HDGC, lobular carcinoma of the breast (LBC) and possibly other organ sites have been shown to be associated with the familial cancer syndrome. Given the complexity of HDGC, not only with regard to the management of the DGC risk, but also with regard to the risk for other related cancers, such as LBC, a multi-disciplinary approach is needed for the management of individuals with known CDH1 mutations.


Gut | 2012

Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS): a new autosomal dominant syndrome

Daniel L. Worthley; Kerry Phillips; Nicola Wayte; Kasmintan A. Schrader; Sue Healey; Pardeep Kaurah; Arthur Shulkes; Florian Grimpen; Andrew D. Clouston; Daniel J. Moore; D. Cullen; D. Ormonde; D. Mounkley; Xiaogang Wen; N. Lindor; Fátima Carneiro; David Huntsman; Georgia Chenevix-Trench; Graeme Suthers

Objective The purpose of this study was the clinical and pathological characterisation of a new autosomal dominant gastric polyposis syndrome, gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS). Methods Case series were examined, documenting GAPPS in three families from Australia, the USA and Canada. The affected families were identified through referral to centralised clinical genetics centres. Results The report identifies the clinical and pathological features of this syndrome, including the predominant dysplastic fundic gland polyp histology, the exclusive involvement of the gastric body and fundus, the apparent inverse association with current Helicobacter pylori infection and the autosomal dominant mode of inheritance. Conclusions GAPPS is a unique gastric polyposis syndrome with a significant risk of gastric adenocarcinoma. It is characterised by the autosomal dominant transmission of fundic gland polyposis, including areas of dysplasia or intestinal-type gastric adenocarcinoma, restricted to the proximal stomach, and with no evidence of colorectal or duodenal polyposis or other heritable gastrointestinal cancer syndromes.


Journal of Clinical Oncology | 2014

Cancer Genomics and Inherited Risk

Zsofia K. Stadler; Kasmintan A. Schrader; Joseph Vijai; Mark E. Robson; Kenneth Offit

Next-generation sequencing (NGS) has enabled whole-exome and whole-genome sequencing of tumors for causative mutations, allowing for more accurate targeting of therapies. In the process of sequencing the tumor, comparisons to the germline genome may identify variants associated with susceptibility to cancer as well as other hereditary diseases. Already, the combination of massively parallel sequencing and selective capture approaches has facilitated efficient simultaneous genetic analysis (multiplex testing) of large numbers of candidate genes. As the field of oncology incorporates NGS approaches into tumor and germline analyses, it has become clear that the ability to achieve high-throughput genotyping surpasses our current ability to interpret and appropriately apply the vast amounts of data generated from such technologies. A review of the current state of knowledge of rare and common genetic variants associated with cancer risk or treatment outcome reveals significant progress, as well as a number of challenges associated with the clinical translation of these discoveries. The combined efforts of oncologists, genetic counselors, and cancer geneticists will be required to drive the paradigm shift toward personalized or precision medicine and to ensure the incorporation of NGS technologies into the practice of preventive oncology.


JAMA Oncology | 2016

Germline Variants in Targeted Tumor Sequencing Using Matched Normal DNA.

Kasmintan A. Schrader; Donavan T. Cheng; Vijai Joseph; Meera Prasad; Michael F. Walsh; Ahmet Zehir; Ai Ni; Tinu Thomas; Ryma Benayed; Asad Ashraf; Annie Lincoln; Maria E. Arcila; Zsofia K. Stadler; David B. Solit; David M. Hyman; Liying Zhang; David S. Klimstra; Marc Ladanyi; Kenneth Offit; Michael F. Berger; Mark Robson

IMPORTANCE Tumor genetic sequencing identifies potentially targetable genetic alterations with therapeutic implications. Analysis has concentrated on detecting tumor-specific variants, but recognition of germline variants may prove valuable as well. OBJECTIVE To estimate the burden of germline variants identified through routine clinical tumor sequencing. DESIGN, SETTING, AND PARTICIPANTS Patients with advanced cancer diagnoses eligible for studies of targeted agents at Memorial Sloan Kettering Cancer Center are offered tumor-normal sequencing with MSK-IMPACT, a 341-gene panel. We surveyed the germline variants seen in 187 overlapping genes with Mendelian disease associations in 1566 patients who had undergone tumor profiling between March and October 2014. MAIN OUTCOMES AND MEASURES The number of presumed pathogenic germline variants (PPGVs) and variants of uncertain significance per person in 187 genes associated with single-gene disorders and the proportions of individuals with PPGVs in clinically relevant gene subsets, in genes consistent with known tumor phenotypes, and in genes with evidence of second somatic hits in their tumors. RESULTS The mean age of the 1566 patients was 58 years, and 54% were women. Presumed pathogenic germline variants in known Mendelian disease-associated genes were identified in 246 of 1566 patients (15.7%; 95% CI, 14.0%-17.6%), including 198 individuals with mutations in genes associated with cancer susceptibility. Germline findings in cancer susceptibility genes were concordant with the individuals cancer type in only 81 of 198 cases (40.9%; 95% CI, 34.3%-47.9%). In individuals with PPGVs retained in the tumor, somatic alteration of the other allele was seen in 39 of 182 cases (21.4%; 95% CI, 16.1%-28.0%), of which 13 cases did not show a known correlation of the germline mutation and a known syndrome. Mutations in non-cancer-related Mendelian disease genes were seen in 55 of 1566 cases (3.5%; 95% CI, 27.1%-45.4%). Almost every individual had more than 1 variant of uncertain significance (1565 of 1566 patients; 99.9%; 95% CI, 99.6%-99.9%). CONCLUSIONS AND RELEVANCE Germline variants are common in individuals undergoing tumor-normal sequencing and may reveal otherwise unsuspected syndromic associations.


Obstetrics & Gynecology | 2012

Germline BRCA1 and BRCA2 mutations in ovarian cancer: utility of a histology-based referral strategy.

Kasmintan A. Schrader; Jane Hurlburt; Steve E. Kalloger; Samantha Hansford; Sean Young; David Huntsman; C. Blake Gilks; Jessica N. McAlpine

OBJECTIVE: To estimate the frequency of BRCA1 and BRCA2 germline mutations in women with nonmucinous epithelial ovarian carcinoma unselected for a family history of breast or ovarian cancer. METHODS: From 2004 to 2009, women undergoing surgical staging for nonmucinous epithelial ovarian carcinoma, including fallopian tube and primary peritoneal carcinoma, were invited to participate in tumor banking and genetic counseling for BRCA1 and BRCA2 mutations. Pathology and family history obtained by the gynecologic oncology surgeon and genetic counselors were reviewed. RESULTS: Of 131 women fulfilling entry criteria, germline BRCA1 and BRCA2 mutations were found in 20% (26/131) and were exclusively associated with high-grade serous histology (26/103 [25%]). Restricting BRCA1 and BRCA2 testing to women with family histories of hereditary breast and ovarian cancer, as ascertained by the surgeon, missed 14 mutation carriers, lowering detection rates to 9% (12/131) or 11.6% (12/103) if only considering the patients with high-grade serous histology. This improved to 16% (21/131) or 20.4% (21/103) when ascertained by the genetic counselor; however, 5 of 26 (19%) mutation carriers did not have a family history of hereditary breast or ovarian cancer. CONCLUSION: Germline BRCA1 and BRCA2 mutations in ovarian (pelvic) cancer are associated with high-grade serous histology. The high incidence (25%) of germline BRCA1 and BRCA2 mutations specific to the high-grade serous subtype suggests that genetic assessment of all women diagnosed with high-grade serous ovarian (pelvic) carcinoma will improve detection rates and capture mutation carriers otherwise missed by referral based on family history alone. LEVEL OF EVIDENCE: II


PLOS Genetics | 2013

A Recessive Founder Mutation in Regulator of Telomere Elongation Helicase 1, RTEL1, Underlies Severe Immunodeficiency and Features of Hoyeraal Hreidarsson Syndrome

Bari J. Ballew; Vijai Joseph; Saurav De; Grzegorz Sarek; Jean-Baptiste Vannier; Travis H. Stracker; Kasmintan A. Schrader; Trudy N. Small; Richard J. O'Reilly; Chris Manschreck; Megan Harlan Fleischut; Liying Zhang; John Sullivan; Kelly L. Stratton; Meredith Yeager; Kevin B. Jacobs; Neelam Giri; Blanche P. Alter; Joseph Boland; Laurie Burdett; Kenneth Offit; Simon J. Boulton; Sharon A. Savage; John H.J. Petrini

Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.


PLOS ONE | 2009

The Specificity of the FOXL2 c.402C>G Somatic Mutation: A Survey of Solid Tumors

Kasmintan A. Schrader; Bella O. Gorbatcheva; Janine Senz; Alireza Heravi-Moussavi; Nataliya Melnyk; Clara Salamanca; Sarah Maines-Bandiera; Susanna L. Cooke; Peter C. K. Leung; James D. Brenton; C. Blake Gilks; John E. Monahan; David Huntsman

Background A somatic mutation in the FOXL2 gene is reported to be present in almost all (97%; 86/89) morphologically defined, adult-type, granulosa-cell tumors (A-GCTs). This FOXL2 c.402C>G mutation changes a highly conserved cysteine residue to a tryptophan (p.C134W). It was also found in a minority of other ovarian malignant stromal tumors, but not in benign ovarian stromal tumors or unrelated ovarian tumors or breast cancers. Methodology/Principal Findings Herein we studied other cancers and cell lines for the presence of this mutation. We screened DNA from 752 tumors of epithelial and mesenchymal origin and 28 ovarian cancer cell lines and 52 other cancer cell lines of varied origin. We found the FOXL2 c.402C>G mutation in an unreported A-GCT case and the A-GCT-derived cell line KGN. All other tumors and cell lines analyzed were mutation negative. Conclusions/Significance In addition to proving that the KGN cell line is a useful model to study A-GCTs, these data show that the c.402C>G mutation in FOXL2 is not commonly found in a wide variety of other cancers and therefore it is likely pathognomonic for A-GCTs and closely related tumors.


Journal of Medical Genetics | 2011

Germline mutations in CDH1 are infrequent in women with early-onset or familial lobular breast cancers

Kasmintan A. Schrader; Serena Masciari; Niki Boyd; Clara Salamanca; Janine Senz; Darren N. Saunders; Erika Yorida; Sarah Maines-Bandiera; Pardeep Kaurah; Nadine Tung; Mark E. Robson; Paula D. Ryan; Olufunmilayo I. Olopade; Susan M. Domchek; James M. Ford; Claudine Isaacs; Powel H. Brown; Judith Balmaña; A. R. Razzak; Penelope Miron; K. Coffey; Mb Terry; Esther M. John; Irene L. Andrulis; Jo Knight; Frances P. O'Malley; Mark J. Daly; P. Bender; Richard G. Moore; Melissa C. Southey

Background Germline mutations in CDH1 are associated with hereditary diffuse gastric cancer; lobular breast cancer also occurs excessively in families with such condition. Method To determine if CDH1 is a susceptibility gene for lobular breast cancer in women without a family history of diffuse gastric cancer, germline DNA was analysed for the presence of CDH1 mutations in 318 women with lobular breast cancer who were diagnosed before the age of 45 years or had a family history of breast cancer and were not known, or known not, to be carriers of germline mutations in BRCA1 or BRCA2. Cases were ascertained through breast cancer registries and high-risk cancer genetic clinics (Breast Cancer Family Registry, the kConFab and a consortium of breast cancer genetics clinics in the United States and Spain). Additionally, Multiplex Ligation-dependent Probe Amplification was performed for 134 cases to detect large deletions. Results No truncating mutations and no large deletions were detected. Six non-synonymous variants were found in seven families. Four (4/318 or 1.3%) are considered to be potentially pathogenic through in vitro and in silico analysis. Conclusion Potentially pathogenic germline CDH1 mutations in women with early-onset or familial lobular breast cancer are at most infrequent.

Collaboration


Dive into the Kasmintan A. Schrader's collaboration.

Top Co-Authors

Avatar

Kenneth Offit

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Joseph Vijai

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Tinu Thomas

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mark E. Robson

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rohini Rau-Murthy

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Robert J. Klein

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Kelly L. Stratton

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Zsofia K. Stadler

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge