Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kasper Hoebe is active.

Publication


Featured researches published by Kasper Hoebe.


Nature | 2003

Identification of Lps2 as a key transducer of MyD88-independent TIR signalling

Kasper Hoebe; Xiaoping Du; Philippe Georgel; Edith M. Janssen; Koichi Tabeta; Sung Ouk Kim; Jason Goode; Pei Lin; Navjiwan Mann; Suzanne Mudd; Karine Crozat; Sosathya Sovath; Jiahuai Han; Bruce Beutler

In humans, ten Toll-like receptor (TLR) paralogues sense molecular components of microbes, initiating the production of cytokine mediators that create the inflammatory response. Using N-ethyl-N-nitrosourea, we induced a germline mutation called Lps2, which abolishes cytokine responses to double-stranded RNA and severely impairs responses to the endotoxin lipopolysaccharide (LPS), indicating that TLR3 and TLR4 might share a specific, proximal transducer. Here we identify the Lps2 mutation: a distal frameshift error in a Toll/interleukin-1 receptor/resistance (TIR) adaptor protein known as Trif or Ticam-1. TrifLps2 homozygotes are markedly resistant to the toxic effects of LPS, and are hypersusceptible to mouse cytomegalovirus, failing to produce type I interferons when infected. Compound homozygosity for mutations at Trif and MyD88 (a cytoplasmic TIR-domain-containing adaptor protein) loci ablates all responses to LPS, indicating that only two signalling pathways emanate from the LPS receptor. However, a Trif-independent cell population is detectable when TrifLps2 mutant macrophages are stimulated with LPS. This reveals that an alternative MyD88-dependent ‘adaptor X’ pathway is present in some, but not all, macrophages, and implies afferent immune specialization.


Nature | 2005

Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections

Jochen Mattner; Kristin L. DeBord; Nahed Ismail; Randal D. Goff; Carlos Cantu; Dapeng Zhou; Pierre Saint-Mezard; Vivien Wang; Ying Gao; Ning Yin; Kasper Hoebe; Olaf Schneewind; David H. Walker; Bruce Beutler; Luc Teyton; Paul B. Savage; Albert Bendelac

CD1d-restricted natural killer T (NKT) cells are innate-like lymphocytes that express a conserved T-cell receptor and contribute to host defence against various microbial pathogens. However, their target lipid antigens have remained elusive. Here we report evidence for microbial, antigen-specific activation of NKT cells against Gram-negative, lipopolysaccharide (LPS)-negative alpha-Proteobacteria such as Ehrlichia muris and Sphingomonas capsulata. We have identified glycosylceramides from the cell wall of Sphingomonas that serve as direct targets for mouse and human NKT cells, controlling both septic shock reaction and bacterial clearance in infected mice. In contrast, Gram-negative, LPS-positive Salmonella typhimurium activates NKT cells through the recognition of an endogenous lysosomal glycosphingolipid, iGb3, presented by LPS-activated dendritic cells. These findings identify two novel antigenic targets of NKT cells in antimicrobial defence, and show that glycosylceramides are an alternative to LPS for innate recognition of the Gram-negative, LPS-negative bacterial cell wall.


Nature | 2005

CD36 is a sensor of diacylglycerides

Kasper Hoebe; Philippe Georgel; Sophie Rutschmann; Xin Du; Suzanne Mudd; Karine Crozat; Sosathya Sovath; Louis Shamel; Thomas Hartung; Ulrich Zähringer; Bruce Beutler

Toll-like receptor 2 (TLR2) is required for the recognition of numerous molecular components of bacteria, fungi and protozoa. The breadth of the ligand repertoire seems unusual, even if one considers that TLR2 may form heteromers with TLRs 1 and 6 (ref. 12), and it is likely that additional proteins serve as adapters for TLR2 activation. Here we show that an N-ethyl-N-nitrosourea-induced nonsense mutation of Cd36 (oblivious) causes a recessive immunodeficiency phenotype in which macrophages are insensitive to the R-enantiomer of MALP-2 (a diacylated bacterial lipopeptide) and to lipoteichoic acid. Homozygous mice are hypersusceptible to Staphylococcus aureus infection. Cd36obl macrophages readily detect S-MALP-2, PAM2CSK4, PAM3CSK4 and zymosan, revealing that some—but not all—TLR2 ligands are dependent on CD36. Already known as a receptor for endogenous molecules, CD36 is also a selective and nonredundant sensor of microbial diacylglycerides that signal via the TLR2/6 heterodimer.


Nature Immunology | 2004

The interface between innate and adaptive immunity

Kasper Hoebe; Edith M. Janssen; Bruce Beutler

This focus analyzes some of the ways the innate immune system influences adaptive immune responses. Here the main principles and themes that govern this intricate relationship are discussed.


Nature Immunology | 2006

Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria.

Yuki Kinjo; Emmanuel Tupin; Douglass Wu; Masakazu Fujio; Raquel Garcia-Navarro; Mohammed Rafii El Idrissi Benhnia; Dirk M. Zajonc; Gil Ben-Menachem; Gary D. Ainge; Gavin F. Painter; Archana Khurana; Kasper Hoebe; Samuel M. Behar; Bruce Beutler; Ian A. Wilson; Moriya Tsuji; Timothy J. Sellati; Chi-Huey Wong; Mitchell Kronenberg

Natural killer T (NKT) cells recognize glycosphingolipids presented by CD1d molecules and have been linked to defense against microbial infections. Previously defined foreign glycosphingolipids recognized by NKT cells are uniquely found in nonpathogenic sphingomonas bacteria. Here we show that mouse and human NKT cells also recognized glycolipids, specifically a diacylglycerol, from Borrelia burgdorferi, which causes Lyme disease. The B. burgdorferi–derived, glycolipid-induced NKT cell proliferation and cytokine production and the antigenic potency of this glycolipid was dependent on acyl chain length and saturation. These data indicate that NKT cells recognize categories of glycolipids beyond those in sphingomonas and suggest that NKT cell responses driven by T cell receptor–mediated glycolipid recognition may provide protection against diverse pathogens.


Journal of Leukocyte Biology | 2003

How we detect microbes and respond to them: the Toll-like receptors and their transducers

Bruce Beutler; Kasper Hoebe; Xin Du; Richard J. Ulevitch

Macrophages and dendritic cells are in the front line of host defense. When they sense host invasion, they produce cytokines that alert other innate immune cells and also abet the development of an adaptive immune response. Although lipolysaccharide (LPS), peptidoglycan, unmethylated DNA, and other microbial products were long known to be the primary targets of innate immune recognition, there was puzzlement as to how each molecule triggered a response. It is now known that the Toll‐like receptors (TLRs) are the principal signaling molecules through which mammals sense infection. Each TLR recognizes a restricted subset of molecules produced by microbes, and in some circumstances, only a single type of molecule is sensed (e.g., only LPS is sensed by TLR4). TLRs direct the activation of immune cells near to and far from the site of infection, mobilizing the comparatively vast immune resources of the host to confine and defeat an invasive organism before it has become widespread. The biochemical details of TLR signaling have been analyzed through forward and reverse genetic methods, and full elucidation of the molecular interactions that transpire within the first minutes following contact between host and pathogen will soon be at hand.


Science | 2006

Adjuvant-Enhanced Antibody Responses in the Absence of Toll-Like Receptor Signaling

Amanda L. Gavin; Kasper Hoebe; Bao Duong; Takayuki Ota; Christopher E. Martin; Bruce Beutler; Davrid Nemazee

Innate immune signals mediated by Toll-like receptors (TLRs) have been thought to contribute considerably to the antibody-enhancing effects of vaccine adjuvants. However, we report here that mice deficient in the critical signaling components for TLR mount robust antibody responses to T cell–dependent antigen given in four typical adjuvants: alum, Freunds complete adjuvant, Freunds incomplete adjuvant, and monophosphoryl-lipid A/trehalose dicorynomycolate adjuvant. We conclude that TLR signaling does not account for the action of classical adjuvants and does not fully explain the action of a strong adjuvant containing a TLR ligand. This may have important implications in the use and development of vaccine adjuvants.


Nature Immunology | 2003

Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways

Kasper Hoebe; Edith M. Janssen; Sung Ouk Kim; Lena Alexopoulou; Richard A. Flavell; Jiahuai Han; Bruce Beutler

Both lipopolysaccharide (LPS) and double-stranded RNA (dsRNA) are adjuvants for the adaptive immune response, inducing upregulation of costimulatory molecules (UCM) on antigen-presenting cells. Trif, an adapter protein that transduces signals from Toll-like receptor 4 (TLR4) and TLR3, permits the induction of many cytokines, including interferon-β, which signals through the type I interferon receptor. We show here that LPS-induced UCM was strictly dependent on the TLR4→Trif axis, whereas dsRNA-induced UCM was only partly dependent on the TLR3→Trif axis. But both LPS- and dsRNA-induced UCM were entirely dependent on type I interferon receptor signaling. These findings show that UCM involves an autocrine or paracrine loop, and indicate that an alternative TLR3-independent, Trif-independent pathway contributes to dsRNA-induced UCM.


Nature Medicine | 2007

TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity

Roberto Baccala; Kasper Hoebe; Dwight H. Kono; Bruce Beutler; Argyrios N. Theofilopoulos

We formulate a two-phase paradigm of autoimmunity associated with systemic lupus erythematosus, the archetypal autoimmune disease. The initial Toll-like receptor (TLR)-independent phase is mediated by dendritic cell uptake of apoptotic cell debris and associated nucleic acids, whereas the subsequent TLR-dependent phase serves an amplification function and is mediated by uptake of TLR ligands derived from self-antigens (principally nucleic acids) complexed with autoantibodies. Both phases depend on elaboration of type I interferons (IFNs), and therapeutic interruption of induction or activity of these cytokines in predisposed individuals might have a substantial mitigating effect in lupus and other autoimmune diseases.


Infection and Immunity | 2005

A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with gram-positive bacteria.

Philippe Georgel; Karine Crozat; Xavier Lauth; Evgenia Makrantonaki; Holger Seltmann; Sosathya Sovath; Kasper Hoebe; Xin Du; Sophie Rutschmann; Zhengfan Jiang; Timothy Bigby; Victor Nizet; Christos C. Zouboulis; Bruce Beutler

ABSTRACT flake (flk), an N-ethyl-N-nitrosourea-induced recessive germ line mutation of C57BL/6 mice, impairs the clearance of skin infections by Streptococcus pyogenes and Staphylococcus aureus, gram-positive pathogens that elicit innate immune responses by activating Toll-like receptor 2 (TLR2) (K. Takeda and S. Akira, Cell. Microbiol. 5:143-153, 2003). Positional cloning and sequencing revealed that flk is a novel allele of the stearoyl coenzyme A desaturase 1 gene (Scd1). flake homozygotes show reduced sebum production and are unable to synthesize the monounsaturated fatty acids (MUFA) palmitoleate (C16:1) and oleate (C18:1), both of which are bactericidal against gram-positive (but not gram-negative) organisms in vitro. However, intradermal MUFA administration to S. aureus-infected mice partially rescues the flake phenotype, which indicates that an additional component of the sebum may be required to improve bacterial clearance. In normal mice, transcription of Scd1—a gene with numerous NF-κB elements in its promoter—is strongly and specifically induced by TLR2 signaling. Similarly, the SCD1 gene is induced by TLR2 signaling in a human sebocyte cell line. These observations reveal the existence of a regulated, lipid-based antimicrobial effector pathway in mammals and suggest new approaches to the treatment or prevention of infections with gram-positive bacteria.

Collaboration


Dive into the Kasper Hoebe's collaboration.

Top Co-Authors

Avatar

Bruce Beutler

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xin Du

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edith M. Janssen

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristin Lampe

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sosathya Sovath

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jochen Mattner

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Hildeman

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge