Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katalin M. Gothard is active.

Publication


Featured researches published by Katalin M. Gothard.


Current Biology | 2007

Facial-Expression and Gaze-Selective Responses in the Monkey Amygdala

Kari L. Hoffman; Katalin M. Gothard; Michael Schmid; Nk Logothetis

The social behavior of both human and nonhuman primates relies on specializations for the recognition of individuals, their facial expressions, and their direction of gaze. A broad network of cortical and subcortical structures has been implicated in face processing, yet it is unclear whether co-occurring dimensions of face stimuli, such as expression and direction of gaze, are processed jointly or independently by anatomically and functionally segregated neural structures. Awake macaques were presented with a set of monkey faces displaying aggressive, neutral, and appeasing expressions with head and eyes either averted or directed. BOLD responses to these faces as compared to Fourier-phase-scrambled images revealed widespread activation of the superior temporal sulcus and inferotemporal cortex and included activity in the amygdala. The different dimensions of the face stimuli elicited distinct activation patterns among the amygdaloid nuclei. The basolateral amygdala, including the lateral, basal, and accessory basal nuclei, produced a stronger response for threatening than appeasing expressions. The central nucleus and bed nucleus of the stria terminalis responded more to averted than directed-gaze faces. Independent behavioral measures confirmed that faces with averted gaze were more arousing, suggesting the activity in the central nucleus may be related to attention and arousal.


The Journal of Neuroscience | 2005

Self-Motion and the Hippocampal Spatial Metric

Alejandro Terrazas; Michael Krause; Peter Lipa; Katalin M. Gothard; Carol A. Barnes; Bruce L. McNaughton

Self-motion signals are sufficient for animal navigation (“path integration”) and for updating hippocampal location-specific firing. The contributions of ambulatory, vestibular, and optic self-motion signals to CA1 unit activity and EEG were studied while rats either walked or drove a car between locations on a circular track (referred to as WALK and CAR, respectively) or experienced pseudomotion, in which the animal was stationary and the environment was rotated (WORLD). Fewer pyramidal cells expressed place fields during CAR and those that did exhibited substantially larger place fields. The number of theta cycles required to traverse a place field increased, whereas the slope of the theta phase of firing versus position function was reduced. The presence and/or location of place fields were not well correlated between conditions. These effects were even more accentuated during WORLD. These results are not explainable by a simple “smearing out” of place fields but, in terms of size of place fields relative to the track size, are comparable with what would be observed if the track circumference was reduced and the animal moved around it at a correspondingly slower speed. Theta (and its 14–18 Hz harmonic) power were dependent on velocity, but the gain of this function was substantially reduced during CAR and WORLD, again as if the rat were moving more slowly. The spatial scale over which the hippocampal population vector is updated appears to be derived primarily from the gain of a self-motion velocity signal with approximately equal components derived from ambulation, vestibular, and optic-flow signals.


Animal Cognition | 2004

How do rhesus monkeys ( Macaca mulatta) scan faces in a visual paired comparison task

Katalin M. Gothard; Cynthia A. Erickson; David G. Amaral

When novel and familiar faces are viewed simultaneously, humans and monkeys show a preference for looking at the novel face. The facial features attended to in familiar and novel faces, were determined by analyzing the visual exploration patterns, or scanpaths, of four monkeys performing a visual paired comparison task. In this task, the viewer was first familiarized with an image and then it was presented simultaneously with a novel and the familiar image. A looking preference for the novel image indicated that the viewer recognized the familiar image and hence differentiates between the familiar and the novel images. Scanpaths and relative looking preference were compared for four types of images: (1) familiar and novel objects, (2) familiar and novel monkey faces with neutral expressions, (3) familiar and novel inverted monkey faces, and (4) faces from the same monkey with different facial expressions. Looking time was significantly longer for the novel face, whether it was neutral, expressing an emotion, or inverted. Monkeys did not show a preference, or an aversion, for looking at aggressive or affiliative facial expressions. The analysis of scanpaths indicated that the eyes were the most explored facial feature in all faces. When faces expressed emotions such as a fear grimace, then monkeys scanned features of the face, which contributed to the uniqueness of the expression. Inverted facial images were scanned similarly to upright images. Precise measurement of eye movements during the visual paired comparison task, allowed a novel and more quantitative assessment of the perceptual processes involved the spontaneous visual exploration of faces and facial expressions. These studies indicate that non-human primates carry out the visual analysis of complex images such as faces in a characteristic and quantifiable manner.


Journal of Neurophysiology | 2009

Behavioral Triggers of Skin Conductance Responses and Their Neural Correlates in the Primate Amygdala

Christopher M. Laine; Kevin M. Spitler; Clayton P. Mosher; Katalin M. Gothard

The amygdala plays a crucial role in evaluating the emotional significance of stimuli and in transforming the results of this evaluation into appropriate autonomic responses. Lesion and stimulation studies suggest involvement of the amygdala in the generation of the skin conductance response (SCR), which is an indirect measure of autonomic activity that has been associated with both emotion and attention. It is unclear if this involvement marks an emotional reaction to an external stimulus or sympathetic arousal regardless of its origin. We recorded skin conductance in parallel with single-unit activity from the right amygdala of two rhesus monkeys during a rewarded image viewing task and while the monkeys sat alone in a dimly lit room, drifting in and out of sleep. In both experimental conditions, we found similar SCR-related modulation of activity at the single-unit and neural population level. This suggests that the amygdala contributes to the production or modulation of SCRs regardless of the source of sympathetic arousal.


Animal Cognition | 2009

Multiple perceptual strategies used by macaque monkeys for face recognition

Katalin M. Gothard; Kelly N. Brooks; Mary A. Peterson

Successful integration of individuals in macaque societies suggests that monkeys use fast and efficient perceptual mechanisms to discriminate between conspecifics. Humans and great apes use primarily holistic and configural, but also feature-based, processing for face recognition. The relative contribution of these processes to face recognition in monkeys is not known. We measured face recognition in three monkeys performing a visual paired comparison task. Monkey and humans faces were (1) axially rotated, (2) inverted, (3) high-pass filtered, and (4) low-pass filtered to isolate different face processing strategies. The amount of time spent looking at the eyes, mouth, and other facial features was compared across monkey and human faces for each type of stimulus manipulation. For all monkeys, face recognition, expressed as novelty preference, was intact for monkey faces that were axially rotated or spatially filtered and was supported in general by preferential looking at the eyes, but was impaired for inverted faces in two of the three monkeys. Axially rotated, upright human faces with a full range of spatial frequencies were also recognized, however, the distribution of time spent exploring each facial feature was significantly different compared to monkey faces. No novelty preference, and hence no inferred recognition, was observed for inverted or low-pass filtered human faces. High-pass filtered human faces were recognized, however, the looking pattern on facial features deviated from the pattern observed for monkey faces. Taken together these results indicate large differences in recognition success and in perceptual strategies used by monkeys to recognize humans versus conspecifics. Monkeys use both second-order configural and feature-based processing to recognize the faces of conspecifics, but they use primarily feature-based strategies to recognize human faces.


The Journal of Neuroscience | 2010

Response characteristics of basolateral and centromedial neurons in the primate amygdala

Clayton P. Mosher; Prisca E. Zimmerman; Katalin M. Gothard

Based on cellular architecture and connectivity, the main nuclei of the primate amygdala are divided in two clusters: basolateral (BL) and centromedial (CM). These anatomical features suggest a functional division of labor among the nuclei. The BL nuclei are thought to be involved primarily in evaluating the emotional significance or context-dependent relevance of all stimuli, including social signals such as facial expressions. The CM nuclei appear to be involved in allocating attention to stimuli of high significance and in initiating situation-appropriate autonomic responses. The goal of this study was to determine how this division of labor manifests in the response properties of neurons recorded from these two nuclear groups. We recorded the activity of 454 single neurons from identified nuclear sites in three monkeys trained to perform an image-viewing task. The task required orienting and attending to cues that predicted trial progression and viewing images with broadly varying emotional content. The two populations of neurons showed large overlaps in neurophysiological properties. We found, however, that CM neurons show higher firing and less regular spiking patterns than BL neurons. Furthermore, neurons in the CM nuclei were more likely to respond to task events (fixation, image on, image off), whereas neurons in the BL nuclei were more likely to respond selectively to the content of stimulus images. The overlap in the physiological properties of the CM and BL neurons suggest distributed processing across the nuclear groups. The differences, therefore, appear to be a processing bias rather than a hallmark of mutually exclusive functions.


American Journal of Physical Anthropology | 2010

Brief communication: MaqFACS: A muscle-based facial movement coding system for the rhesus macaque.

Lisa A. Parr; Bridget M. Waller; Anne M. Burrows; Katalin M. Gothard; Sarah-Jane Vick

Over 125 years ago, Charles Darwin (1872) suggested that the only way to fully understand the form and function of human facial expression was to make comparisons with other species. Nevertheless, it has been only recently that facial expressions in humans and related primate species have been compared using systematic, anatomically based techniques. Through this approach, large-scale evolutionary and phylogenetic analyses of facial expressions, including their homology, can now be addressed. Here, the development of a muscular-based system for measuring facial movement in rhesus macaques (Macaca mulatta) is described based on the well-known FACS (Facial Action Coding System) and ChimpFACS. These systems describe facial movement according to the action of the underlying facial musculature, which is highly conserved across primates. The coding systems are standardized; thus, their use is comparable across laboratories and study populations. In the development of MaqFACS, several species differences in the facial movement repertoire of rhesus macaques were observed in comparison with chimpanzees and humans, particularly with regard to brow movements, puckering of the lips, and ear movements. These differences do not seem to be the result of constraints imposed by morphological differences in the facial structure of these three species. It is more likely that they reflect unique specializations in the communicative repertoire of each species.


Emotion | 2006

Intramuscular Electrical Stimulation of Facial Muscles in Humans and Chimpanzees: Duchenne Revisited and Extended

Bridget M. Waller; Sarah-Jane Vick; Lisa A. Parr; Kim A. Bard; Marcia Smith Pasqualini; Katalin M. Gothard; Andrew J. Fuglevand

The pioneering work of Duchenne (1862/1990) was replicated in humans using intramuscular electrical stimulation and extended to another species (Pan troglodytes: chimpanzees) to facilitate comparative facial expression research. Intramuscular electrical stimulation, in contrast to the original surface stimulation, offers the opportunity to activate individual muscles as opposed to groups of muscles. In humans, stimulation resulted in appearance changes in line with Facial Action Coding System (FACS) action units (AUs), and chimpanzee facial musculature displayed functional similarity to human facial musculature. The present results provide objective identification of the muscle substrate of human and chimpanzee facial expressions- data that will be useful in providing a common language to compare the units of human and chimpanzee facial expression.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex

Fadila Hadj-Bouziane; Ning Liu; Andrew H. Bell; Katalin M. Gothard; Wen-Ming Luh; Roger B. H. Tootell; Elisabeth A. Murray; Leslie G. Ungerleider

Significance Successful social interaction depends on the ability to recognize others, evaluate their mental states (e.g. intentions, desires, and beliefs), and “read” their emotional states. Here, we show that, in monkeys, damage to the amygdala, a brain structure that is central to the expression of emotion, significantly disrupts the processing of emotional facial expression in high-level visual cortical areas involved in face recognition. These findings suggest that the projections of the amygdala to visual cortical areas likely enhance the sensory processing of biologically important signals, including those related to potential environmental threats and social contexts. We previously showed that facial expressions modulate functional MRI activity in the face-processing regions of the macaque monkey’s amygdala and inferior temporal (IT) cortex. Specifically, we showed that faces expressing emotion yield greater activation than neutral faces; we term this difference the “valence effect.” We hypothesized that amygdala lesions would disrupt the valence effect by eliminating the modulatory feedback from the amygdala to the IT cortex. We compared the valence effects within the IT cortex in monkeys with excitotoxic amygdala lesions (n = 3) with those in intact control animals (n = 3) using contrast agent-based functional MRI at 3 T. Images of four distinct monkey facial expressions—neutral, aggressive (open mouth threat), fearful (fear grin), and appeasing (lip smack)—were presented to the subjects in a blocked design. Our results showed that in monkeys with amygdala lesions the valence effects were strongly disrupted within the IT cortex, whereas face responsivity (neutral faces > scrambled faces) and face selectivity (neutral faces > non-face objects) were unaffected. Furthermore, sparing of the anterior amygdala led to intact valence effects in the anterior IT cortex (which included the anterior face-selective regions), whereas sparing of the posterior amygdala led to intact valence effects in the posterior IT cortex (which included the posterior face-selective regions). Overall, our data demonstrate that the feedback projections from the amygdala to the IT cortex mediate the valence effect found there. Moreover, these modulatory effects are consistent with an anterior-to-posterior gradient of projections, as suggested by classical tracer studies.


Physiology & Behavior | 2008

Mapping the contribution of single muscles to facial movements in the Rhesus Macaque

Bridget M. Waller; Lisa A. Parr; Katalin M. Gothard; Anne M. Burrows; Andrew J. Fuglevand

The rhesus macaque (Macaca mulatta) is the most utilized primate model in the biomedical and psychological sciences. Expressive behavior is of interest to scientists studying these animals, both as a direct variable (modeling neuropsychiatric disease, where expressivity is a primary deficit), as an indirect measure of health and welfare, and also in order to understand the evolution of communication. Here, intramuscular electrical stimulation of facial muscles was conducted in the rhesus macaque in order to document the relative contribution of each muscle to the range of facial movements and to compare the expressive function of homologous muscles in humans, chimpanzees and macaques. Despite published accounts that monkeys possess less differentiated and less complex facial musculature, the majority of muscles previously identified in humans and chimpanzees were stimulated successfully in the rhesus macaque and caused similar appearance changes. These observations suggest that the facial muscular apparatus of the monkey has extensive homology to the human face. The muscles of the human face, therefore, do not represent a significant evolutionary departure from those of a monkey species. Thus, facial expressions can be compared between humans and rhesus macaques at the level of the facial musculature, facilitating the systematic investigation of comparative facial communication.

Collaboration


Dive into the Katalin M. Gothard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge